﻿ 基于Ammann-Beenker拼图的复杂网络的模型构造与统计性质

# 基于Ammann-Beenker拼图的复杂网络的模型构造与统计性质Modeling and Statistical Properties of Complex Networks Based on Ammann-Beenker Tiling

Abstract: As an eight-fold symmetric structure, the Ammann-Beenker tiling plays an important role in qua-sicrystal study. We generate the Ammann-Beenker tiling by self-similar transformation and inves-tigate the statistical properties of the corresponding regular complex network and the evolved complex network by adding random connections. The properties include the degree distribution, degree correlation and cluster coefficient. This work suggests a new approach to combine the qu-asicrystal structure and the complex network.

[1] Albert, R. and Barabasi, A.L. (2002) Statistical Mechanics of Complex Network. Reviews of Modern Physics, 74, 47.
http://dx.doi.org/10.1103/RevModPhys.74.47

[2] Newman, M.E.J. (2003) The Structure and Function of Com-plex Networks. SIAM Review, 45, 167-256.
http://dx.doi.org/10.1137/S003614450342480

[3] Boccalctti, S., Latora, V., et al. (2006) Complex Networks: Structure and Dynamics. Physics Reports, 426, 175-308.
http://dx.doi.org/10.1016/j.physrep.2005.10.009

[4] 吴金闪, 狄增如. 从统计物理学看复杂网络研究[J]. 物理学进展, 2004(1): 18-46.

[5] 吴彤. 复杂网络研究及其意义[J]. 哲学研究, 2004(8): 58-63+70.

[6] 何大韧, 刘宗华, 汪秉宏. 复杂系统与复杂网络[M]. 北京: 高等教育出版社, 2009.

[7] Erdos, P. and Penyi, A. (1960) Pub-lication of the Mathematical Institute of the Hungarian Academy of Science. 5, 17-61.

[8] Watts, D.J. and Strogatz, S.H. (1998) Collective Dynamics of “Small-World” Networks. Nature, 393, 440-442.
http://dx.doi.org/10.1038/30918

[9] Barabasi, A.L. and Albert, R. (1999) Emergence of Scaling in Random Network. Science, 286, 509-512.

[10] Ammann, R., Grünbaum, B. and Shephard, G.C. (1992) Aperiodic Tiles. Discrete and Computational Geometry, 8, 1-25.
http://dx.doi.org/10.1007/BF02293033

Top