双钙钛矿Zn2FeTaO6电子结构和自发电极化的第一性原理研究
First-Principle Study of the Electronic Structure and Spontaneous Electric Polarization in Double Perovskite Zn2FeTaO6

作者: 刘仕晨 * , 蔡田怡 * , 雎 胜 :苏州大学物理与光电•能源学部,江苏 苏州;

关键词: 第一性原理Zn2FeTaO6多铁性铁电光伏First Principles Zn2FeTaO6 Multiferroics Ferroelectric Photovoltaics

摘要:
基于第一性原理方法,我们研究了双钙钛矿Zn2FeTaO6的晶体结构、电子结构、以及铁电性质。计算结果表明Zn2FeTaO6中的Zn2+离子,Fe3+离子和Ta5+离子均偏离氧八面体的中心。同时,基于线性响应理论Born有效电荷计算显示其自发电极化强度为79.6 μC/cm2。我们还利用杂化泛函理论进一步研究了Zn2FeTaO6的能带结构,发现带隙宽度约为2.6 eV,与多铁材料BiFeO3接近,显示Zn2FeTaO6在铁电光伏领域的潜在应用。

Abstract: Based on density-functional theory, we have studied the crystal structure, electronic structure, and ferroelectric properties of double perovskite Zn2FeTaO6. It was revealed that Zn2+, Fe3+, and Ta5+ ions in Zn2FeTaO6 displaced away from the center of their oxygen octahedrons. With born effective charge from linear response theory, a large spontaneous electric polarization of 79.6 μC/cm2 was found. Further calculations based hybrid functional show a band gap of around 2.6 eV, which is similar to BiFeO3 and shows its potential application in ferroelectric photovoltaics.

文章引用: 刘仕晨 , 蔡田怡 , 雎 胜 (2016) 双钙钛矿Zn2FeTaO6电子结构和自发电极化的第一性原理研究。 应用物理, 6, 23-29. doi: 10.12677/APP.2016.63004

参考文献

[1] Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M. and Ramesh, R. (2003) Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science, 299, 1719-1722. http://dx.doi.org/10.1126/science.1080615

[2] Dong, S., Liu, J.M., Cheong, S.W. and Ren, Z.F. (2015) Multiferroic Materials and Magnetoelectric Physics: Symmetry, Entanglement, Excitation, and Topology. Advances in Physics, 64, 519-626. http://dx.doi.org/10.1080/00018732.2015.1114338

[3] Hill, N.A. (2000) Why Are There So Few Magnetic Ferroelectrics? The Journal of Physical Chemistry B, 104, 6694- 6709. http://dx.doi.org/10.1021/jp000114x

[4] Benedek, N.A. and Fennie, C.J. (2013) Why Are There So Few Perovskite Ferroelectrics? The Journal of Physical Chemistry C, 117, 13339-13349. http://dx.doi.org/10.1021/jp402046t

[5] Ju, S., Cai, T.Y. and Guo, G.Y. (2009) Electronic Structure, Linear, and Nonlinear Optical Responses in Magnetoelectric Multiferroic Material BiFeO3. The Journal of Chemical Physics, 130, 214708. http://dx.doi.org/10.1063/1.3146796

[6] Ju, S. and Cai, T.Y. (2009) Ab Initio Study of Ferroelectric and Nonlinear Optical Performance in BiFeO3 Ultrathin Films. Applied Physics Letters, 95, 112506. http://dx.doi.org/10.1063/1.3232215

[7] Ju, S. and Cai, T.Y. (2009) First-Principles Studies of the Effect of Oxygen Vacancies on the Electronic Structure and Linear Optical Response of Multiferroic BiFeO3. Applied Physics Letters, 95, 231906. http://dx.doi.org/10.1063/1.3272107

[8] Ederer, C. and Spaldin, N.A. (2004) Magnetoelectrics: A New Route to Magnetic Ferroelectrics. Nature Materials, 3, 849-851. http://dx.doi.org/10.1038/nmat1265

[9] Azuma, M., Takata, K., Saito, T., Ishiwata, S., Shimakawa, Y. and Takano, M. (2005) Designed Ferromagnetic, Ferroelectric Bi2NiMnO6. Journal of the American Chemical Society, 127, 8889-8892. http://dx.doi.org/10.1021/ja0512576

[10] Li, M.R., Walker, D., Retuerto, M., Sarkar, T., Hadermann, J., Stephens, P.W., Croft, M., Ignatov, A., Grams, C.P., Hemberger, J., Nowik, I., Halasyamani, P.S., Tran, T.T., Mukherjee, S., Dasgupta, T.S. and Greenblatt, M. (2013) Polar and Magnetic Mn2FeMO6 (M=Nb, Ta) with LiNbO3-Type Structure: High-Pressure Synthesis. Angewandte Chemie International Edition, 52, 8406-8410. http://dx.doi.org/10.1002/anie.201302775

[11] Li, M.R., Stephens, P.W., Retuerto, M., Sarkar, T., Grams, C.P., Hemberger, J., Croft, M.C., Walker, D. and Greenblatt, M. (2014) Designing Polar and Magnetic Oxides: Zn2FeTaO6—In Search of Multiferroics. Journal of the American Chemical Society, 136, 8508-8511. http://dx.doi.org/10.1021/ja502774v

[12] Blochl, P.E. (1994) Projector Augmented-Wave Method. Physical Review B, 50, 17953. http://dx.doi.org/10.1103/PhysRevB.50.17953

[13] Kresse, G. and Hafner, J. (1993) Ab Initio Molecular Dynamics for Liquid Metals. Physical Review B, 47, 558. http://dx.doi.org/10.1103/PhysRevB.47.558

[14] Kresse, G. and Hafner, J. (1994) Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semi- conductor Transition in Germanium. Physical Review B, 49, 14251. http://dx.doi.org/10.1103/PhysRevB.49.14251

[15] Kresse, G. and Furthmuller, J. (1996) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science, 6, 15-50. http://dx.doi.org/10.1016/0927-0256(96)00008-0

[16] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review B, 77, 3865. http://dx.doi.org/10.1103/physrevlett.77.3865

[17] Blochl, P.E., Jepsen, O. and Andersen, O.K. (1994) Improved Tetrahedron Method for Brillouin-Zone Integrations. Physical Review B, 49, 16223. http://dx.doi.org/10.1103/PhysRevB.49.16223

[18] Heyd, J., Scuseria, G.E. and Ernzerhof, M. (2003) Hybrid Functionals Based on a Screened Coulomb Potential. The Journal of Chemical Physics, 118, 8207. http://dx.doi.org/10.1063/1.1564060

分享
Top