First-Principles Studies of the Al, Ga, In-Doped ZnO Defect Formation Energy

作者: 祁雨杭 , 牛 丽 * , 关 启 , 许华梅 , 卢会清 , 由春秋 :哈尔滨师范大学物理与电子工程学院,光电帯隙省部共建教育部重点实验室,黑龙江 哈尔滨;

关键词: 第一性原理LDA + U掺杂ZnO能带结构形成能First-Principles LDA + U Doped ZnO Electronic Energy Band Structure Defect Formation Energy

利用LDA + U方法计算ⅢA族元素Al、Ga、In掺杂ZnO晶体的能带结构、形成能和跃迁能级,讨论ⅢA族元素掺杂ZnO晶体结构的稳定性和电离性质。替代掺杂在ZnO晶体中形成一个浅施主能级,容易发生电离;GaZn和Gai的形成能相对较低,晶体结构相对稳定;掺杂后ZnO导带下移,费米能级穿过导带。

Abstract: The defect formation energy and the defect transition energy level as well as electronic energy band structure of IIIA (Al, Ga and In)-doped ZnO crystal were investigated by density functional calculations using local density approximation + Hubbard U (LDA + U) approach. We discussed the stability and ionization properties of doped ZnO crystal. Alternative doping in ZnO crystal introduces a shallow donor level so that be ionized easily. GaZn and Gai has a low formation energy and the crystal structure is relatively stable. The conduction band of the doped ZnO is slightly decreased, the Fermi level moves into the conduction band.

文章引用: 祁雨杭 , 牛 丽 , 关 启 , 许华梅 , 卢会清 , 由春秋 (2016) Al、Ga、In掺杂ZnO形成能的第一性原理研究。 应用物理, 6, 15-21. doi: 10.12677/APP.2016.62003


[1] Hong, R.J., Jiang, X., Sittinger, V., et al. (2002) Uniformity in Large Area ZnO:Al Films Prepared by Reactive Midfrequency Magnetron Sputtering. Journal of Vacuum Science & Technology A, 20, 900-905.

[2] Kim, H.-J., Lee, H.-N., Park, J.-C., et al. (2002) The Mechanism of Im-provement of Contact Resistivity in TFT-LCDs between IZO Layers and Al-Based Metal Lines by Diffusion of Mo Atoms. Current Applied Physics, 2, 451.

[3] Jou, J.H., Han, M.Y. and Cheng, D.J. (1992) Substrate Dependent Internal Stress in Sputtered Zinc Oxide Thin Films. Applied Physics, 71, 4333-4336.

[4] Zhou, X.H., Hu, Q.-H. and Fu, Y. (2008) First-Principles LDA+U Studies of the In-Doped ZnO Transparent Conductive Oxide. Journal of Applied Physics, 104, 063703.

[5] Jiang, X., Wong, F.L., Fung, M.K., et al. (2003) Aluminum-Doped Zinc Oxide Films as Transparent Conductive Electrode for Organic Light-Emitting Devices. Applied Physics Letters, 83, 1875-1877.

[6] Lu, J.G., Fujita, S., Kawaharamura, T., et al. (2007) Carrier Concentration Dependence of Band Gap Shift in n-Type ZnO:Al Films. Journal of Applied Physics, 101, 083705.

[7] Matsubara, M., Amini, M.N., Saniz, R., Lamoen, D. and Partoens, B. (2012) Attracting Shallow Donors: Hydrogen Passivation in (Al, Ga, In)-Doped ZnO. Physical Review B, 86, 165207.

[8] Kim, K.J. and Park, Y.R. (2001) Large and Abrupt Optical Band Gap Variation in In-Doped ZnO. Applied Physics Letters, 78, 475-477.

[9] Ye, J.D., Gu, S.L., Zhu, S.M., Liu, S.M., Zheng, Y.D., Zhang, R. and Shi, Y. (2005) Fermi-Level Band Filling and Band-Gap Renormalization in Ga-Doped ZnO. Applied Physics Letters, 86, 192111.

[10] Paier, J., Hirschl, R., Marsman, M. and Kresse, G. (2005) The Per-dew-Burke-Ernzerhof Exchange-Correlation Functional Applied to the G2-1 Test Set Using a Plane-Wave Basis Set. Journal of Chemical Physics, 122, 460-470.

[11] Sanizn, R., Xu, Y., Matsubara, M., Amini, M.N., Dixit, H., Lamoen, D. and Partoens, B. (2013) A Simplified Approach to the Band Gap Correction of Defect Formation Energies: Al, Ga, and In-Doped ZnO. Journal of Physics and Chemistry of Solids, 74, 45-50.

[12] Van de Walle, C.G. and Neugebauer, J. (2004) First-Principles Calculations for Defects and Impurities: Applications to Ⅲ-Nitrides. Journal of Applied Physics, 95, 3851-3879.

[13] Janotti, A. and Van de Walle, C.G. (2007) Native Point Defects in ZnO. Physical Review B, 76, 165202.

[14] Thomas, M. (1997) Semiconductors-Basic Data. 2nd ed. Edited by O. Madelung, Springer, Berlin, 1996, viii, 317 pp., hardcover, DM 88.00, ISBN 3-540-60883-4. Chemical Vapor Deposition, 3, 288-289.

[15] Dean, J.A. (1992) Book Review: Lange’s Handbook of Chemistry. 14th Edition, McGraw-Hill, New York.