一个新五维超混沌电路及其在保密通讯中应用
A New Five Dimensional Hyper-Chaotic Circuit and Its Application in Secure Communication

作者: 龙志超 , 马大柱 :湖北民族学院理学院,湖北 恩施;

关键词: 混沌电路超混沌Lyapunov指数保密通讯Chaotic Circuit Hyperchaos Lyapunov Exponent Secure Communication

摘要:
超混沌系统比普通混沌系统的动态行为更加难以预测,因此在保密通讯中具有更重要的应用价值。本文在Chen混沌系统中引入两个状态变量和一个反向控制器构造了一个新的五维超混沌系统。首先讨论了新系统的定点稳定性及其相空间动力学行为,发现新系统有3个正的Lyapunov指数。设计了该系统的模块化电路,示波器观测结果与数值模拟结果一致。其次采用驱动响应式同步方式实现了新系统的混沌同步,并数值模拟了方波信号的混沌保密通讯过程,利用混沌掩盖法完成了新系统方波信号的混沌保密通讯电路。最后,分别采用混沌信号加入到图片中和图片数字化加入到混沌信号中两种不同的方式实现图片的混沌保密通讯过程。对比研究表明后者的加密效果更好,具有更高的信息还原度。

Abstract: The dynamic behavior of a hyper-chaotic system is much more difficult to be predicted than that of a normal chaos system. Therefore, it becomes very useful in the secure communication. This paper constructed a new five dimensional hyper-chaotic circuit based on Chen system when the two state variables and an inverse controller are introduced. First, the stability of the fixed points and dynamic behavior of the phase space of the new system are discussed, and three positive Lyapunov exponents are found. Modular circuit of the system is designed. The results of circuit simulation are in agreement with the numerical simulation. Then chaos synchronism of the system is achieved with drive-response synchronization method. Numerical simulation of the secure communication process for the square wave signal is given, and chaotic masking method is used to realize the secure communication circuit with square wave voltage signal of the system. Finally, two ways to deal with secure communication are discussed; one is the chaotic signal mixed with the image, and the other is chaotic signal added to the digital image. It is shown that the latter is better than the former in the effect on secure communication, and is more suitable for information reversion.

文章引用: 龙志超 , 马大柱 (2016) 一个新五维超混沌电路及其在保密通讯中应用。 电路与系统, 5, 10-20. doi: 10.12677/OJCS.2016.51002

参考文献

[1] 刘崇新. 分数阶混沌电路及应用[M]. 西安: 西安交通大学出版社, 2011: 1-20.

[2] Li, T.Y. and Yorke, J.A. (1975) Period Three Implies Chaos. American Mathematical Monthly, 82, 985-992.
http://dx.doi.org/10.2307/2318254

[3] Wu, X., Huang, T.Y and Zhang, H. (2006) Lyapunov Indices with Two Nearby Trajectories in a Curved Spacetime. Physical Review D, 74, Article ID: 083001.
http://dx.doi.org/10.1103/PhysRevD.74.083001

[4] Wu, X. and Xie, Y. (2007) Revisit on “Ruling Out Chaos in Compact Binary Systems”. Physical Review D, 76, Article ID: 124004.
http://dx.doi.org/10.1103/PhysRevD.76.124004

[5] Wu, X. and Xie, Y. (2008) Resurvey of Order and Chaos in Spinning Compact Binaries. Physical Review D, 77, Article ID: 103012.
http://dx.doi.org/10.1103/PhysRevD.77.103012

[6] Huang, G., Ni, X. and Wu, X. (2014) Chaos in Two Black Holes with Next-to-Leading Order Spin-Spin Interactions. The European Physical Journal C, 74, 1-8.
http://dx.doi.org/10.1140/epjc/s10052-014-3012-2

[7] Huang, G. and Wu, X. (2014) Dynamics of the Post-Newtonian Circular Restricted Three-Body Problem with Compact Objects. Physical Review D, 89, Article ID: 124034.
http://dx.doi.org/10.1103/PhysRevD.89.124034

[8] Wu, X., Mei, L. and Huang, G. (2015) Analytical and Numerical Studies on Differences between Lagrangian and Hamiltonian Approaches at the Same Post-Newtonian Order. Physical Review D, 91, Article ID: 024042.
http://dx.doi.org/10.1103/physrevd.91.024042

[9] Mei, L., Ju, M. and Wu, X. (2013) Dynamics of Spin Effects of Compact Binaries. Monthly Notices of the Royal Astronomical Society, 435, 2246-2255.
http://dx.doi.org/10.1093/mnras/stt1441

[10] Wu, X. and Huang, G. (2015) Ruling out Chaos in Comparable Mass Compact Binary Systems with One Body Spinning. Monthly Notices of the Royal Astronomical Society, 452, 3167-3178.
http://dx.doi.org/10.1093/mnras/stv1485

[11] Wu, X. and Huang, T. (2003) Computation of Lyapunov Exponents in General Relativity. Physics Letters A, 313, 77-81.
http://dx.doi.org/10.1016/S0375-9601(03)00720-5

[12] 伍歆, 黄天衣. 判定轨道混沌的几个指标[J]. 天文学进展, 2006, 23(4): 318-330.

[13] Benettin, G., Galgani, L. and Giorgilli, A. (1980) Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; A Method for Computing All of Them. Part 1: Theory. Meccanica, 15, 9-20.
http://dx.doi.org/10.1007/bf02128236

[14] Froeschle, C., Lega, E. and Gonczi, R. (1997) Fast Lyapunov Indicators. Application to Asteroidal Motion. Celestial Mechanics and Dynamical Astronomy, 67, 41-62.
http://dx.doi.org/10.1023/A:1008276418601

[15] Ott, E., Grebogi, C. and Yorke, J.A. (1990) Controlling Chaos. Physical Review Letters, 64, 1196-1199.
http://dx.doi.org/10.1103/PhysRevLett.64.1196

[16] Hübler, A. (1998) Adaptive Control of Chaotic Systems with Uncertainties. International Journal of Bifurcation & Chaos, 8, 2041-2046.
http://dx.doi.org/10.1142/S0218127498001698

[17] 余思敏. 混沌系统与混沌电路原理设计及其在通讯中的应用[M]. 西安: 西安电子科技大学出版社, 2011: 4-50.

[18] Huang, G.Q. and Wu, X. (2012) Analysis of New Four-Dimensional Chaotic Circuits with Experimental and Numerical Methods. International Journal of Bifurcation and Chaos, 22, 1250042-1250055.
http://dx.doi.org/10.1142/S0218127412500423

[19] Luo, X.S., Fang, J.Q. and Wang, L.H. (1999) A New Strategy of Chaos Control and a United Mechanism for Several Kinds of Chaos Control Methods. Acta Physica Sinica, 8, 895-901.

[20] Boccaletti, S., Grebogi, C., Lai, Y., Mancini, H. and Maza, D. (2000) The Control of Chaos: Theory and Applications. Physics Reports, 329, 103-197.
http://dx.doi.org/10.1016/S0370-1573(99)00096-4

[21] Rössler, O.E. (1979) An Equation for Hyperchaos. Physics Letters A, 71, 155-157.
http://dx.doi.org/10.1016/0375-9601(79)90150-6

[22] Thamilmaran, K., Lakshmanan, M. and Venkatesan, A. (2004) A Hyperchaos in a Modified Canonical Chua’s Circuit. International Journal of Bifurcation and Chaos, 14, 221-243.
http://dx.doi.org/10.1142/S0218127404009119

[23] Yeh, K., Chen, C.W. and Hsiwng, T.K. (2005) Fuzzy Control for Seismically Excited Bridges with Sliding Bearing Isolation. Advanced Intelligent Computing Theories and Applications, 4681, 473-483.

[24] Edward, O. (1993) Chaos in Dynamical Systems. Cambridge University Press, Cambridge.

[25] 谌龙, 彭海军, 王德石. 一类多涡卷混沌系统构造方法研究[J]. 物理学报, 2008, 57(6): 3337-3341.

[26] Chen, G., Moiola, J.L. and Wanf, H.O. ( 2000) Bifurcation Control: Theories, Methods, and Applica-tions. International Journal of Bifurcation and Chaos, 10, 511-548.
http://dx.doi.org/10.1142/S0218127400000360

[27] 王光义, 郑艳, 刘敬彪. 一个超混沌Lorenz吸引子及其电路实现[J]. 物理学报, 2007(6): 3113-08.

[28] Chen, G. and Ueta, T. (1999) Yet Another Chaotic Attractor. Interna-tional Journal of Bifurcation and Chaos, 9, 1465- 1466.
http://dx.doi.org/10.1142/S0218127499001024

[29] Li, Y., Tang, W.K.S. and Chen, G. (2005) Hyperchaos Evolved from the Generalized Lorenz Equation. International Journal of Circuit Theory and Applications, 33, 234-251.
http://dx.doi.org/10.1002/cta.318

[30] Li, Y.X., Tang, W.K.S. and Chen, G.R. (2005) Generating Hyper-Chaos via State Feedback Control. International Journal of Bifurcation and Chaos, 15, 3367-3375.
http://dx.doi.org/10.1142/S0218127405013988

[31] Chen, A., Lu, J., Lü, J. and Yu, S. (2006) Generating hyperchaotic Lü attractor via state feedback control. Physica A, 364, 103-110.
http://dx.doi.org/10.1016/j.physa.2005.09.039

[32] Wang, G., Zhang, X., Zheng, Y. and Li, Y. (2006) A new modified hyperchaotic Lü system. Physica A, 371, 260-272.
http://dx.doi.org/10.1016/j.physa.2006.03.048

[33] Wang, B. and Guan, Z.H. (2010) Chaos Synchronization in General Complex Dynamical Networks with Coupling Delays. Nonlinear Analysis Real World Applications, 11, 1925-1932.
http://dx.doi.org/10.1016/j.nonrwa.2009.04.020

分享
Top