Research on Optical Properties of Ag/ZnO Nanostructures

作者: 贾文旺 * , 吴龙艳 , 隋成华 :浙江工业大学理学院,浙江 杭州;

关键词: Ag纳米线ZnO量子点等离子体共振荧光增强Ag Nanowires ZnO Quantum Dots Localized Surface Plasmon Fluorescence Enhancement

通过化学法制备了Ag纳米线和ZnO量子点溶胶,并对这两种纳米结构的表面形貌、晶体结构和光学特性进行了研究。结果表明:Ag纳米线和ZnO量子点均为单晶结构且平均粒径分别为130 nm和5 nm。将二者混合制成复合薄膜,在一定混合比例下可使此复合薄膜紫外荧光显著增强。这与Ag纳米线和ZnO量子点复合薄膜的局域表面等离子体共振峰位相一致。此研究结果为ZnO基纳米发光器件的开发利用及参数优化提供了新的途径和参考。

Abstract: Ag nanowires and ZnO quantum dots were fabricated by chemical methods. The surface morphologies, structures and optical properties were investigated. It is found that both Ag nanowires and ZnO quantum dots exhibit single crystal structure with average diameters of 130 nm and 5 nm, respectively. The significantly enhanced UV fluorescence was observed from ZnO quantum dots after mixed with Ag nanowires at a certain ratio. The enhancement emission positions are consistent with the localized surface plasmon resoant modes in Ag nanowires. This study may provide a new way and a reference to design ZnO based nano light-emitting devices.

文章引用: 贾文旺 , 吴龙艳 , 隋成华 (2016) Ag/ZnO量子点复合薄膜光学特性的研究。 光电子, 6, 10-15. doi: 10.12677/OE.2016.61002


[1] Chan, W.C.W. and Nie, S. (1998) Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science, 281, 2016-2018.

[2] Sun, Q., Wang, Y.A., Li, L.S., Wang, D., Zhu, T., Xu, J., Yang, C. and Li, Y. (2007) Bright, Multicoloured Light- Emitting Diodes Based on Quantum Dots. Nature Photonics, 1, 717-722.

[3] Geddes, C.D. and Lakowicz, J.R. (2002) Editorial: Metal-Enhanced Fluorescence. Journal of Fluorescence, 12, 121- 129.

[4] Zhang, Y., Aslan, K., Previte, M.J.R. and Geddes, C.D. (2007) Metal-Enhanced Fluorescence: Surface Plasmons Can Radiate a Fluorophore’s Structured Emission. Applied Physics Letters, 90, 053107.

[5] Wei, H., Ratchford, D., Li, X., Xu, H. and Shih, C.-K. (2009) Propagating Surface Plasmon Induced Photon Emission from Quantum Dots. Nano Letters, 9, 4168-4171.

[6] Pompa, P.P., Martiradonna, L., Torre, A.D., Sala, F.D., Manna, L., De Vittorio, M., Calabi, F., Cingolani, R. and Rinaldi, R. (2006) Metal-Enhanced Fluorescence of Colloidal Nanocrystals with Nanoscale Control. Nature Nanotechnology, 1, 126-130.

[7] Xu, T.N., Hu, L., Jin, S.Q., et al. (2012) Photon Energy Conversion via Localized Surface Plasmons in ZnO/Ag/ZnO Nanostructures. Applied Surface Science, 258, 5886-5891.

[8] Hu, L., Wu, H., Cai, C., et al. (2012) Plasmon-Enhanced Surface-State Emission of CdSe Quantum Dots and Its Application to Microscale Luminescence Patterns. The Journal of Physical Chemistry C, 116, 11283-11291.

[9] Xu, T.N., Li, J. and Sui, C.H. (2014) Photoluminescence Enhancement from Ag/ZnO Nanostructures. Chinese Journal of Luminescence, 35, 404-408.

[10] Qiao, Q., Li, B.H. and Liu, J.S. (2012) Light-Emitting Diodes Fabricated from Small-Size ZnO Quantum Dots. Materials Letters, 74, 104-106.

[11] Zong, R.L., Zhou, J. and Li, Q. (2004) Synthesis and Optical Properties of Silver Nanowire Arrays Embedded in Anodic Alumina Membrane. The Journal of Physical Chemistry B, 108, 16713-16716.

[12] Hines, D.A. and Kamat, P.V. (2014) Recent Advances in Quantum Dot Surface Chemistry. ACS Applied Materials & Interfaces, 6, 3041-3057.

[13] Govorov, A.O., Bryant, G.W. and Zhang, W. (2006) Exciton-Plasmon Interaction and Hybrid Excitons in Semiconductor-Metal Nanoparticle Assemblies. Nano Letters, 6, 984-994.

[14] Sadhu, S., Haldar, K. and Patra, K. (2010) A Size Dependent Resonance Energy Transfer between Semiconductor Quantum Dots and Dye Using FRET and Kinetic Model. The Journal of Physical Chemistry C, 114, 3891-3897.

[15] Zhou, X.D., Xiao, X.H. and Xu, J.X. (2011) Mechanism of the Enhancement and Quenching of ZnO Photoluminescence by ZnO-Ag Coupling. Europhysics Letters, 93, 57009.