带有螺旋副空间四杆机构运动学建模方法
Kinematic Modeling Method of Four-Bar Mechanism with Screw Pair

作者: 倪振松 , 吴瑞坤 :福建师范大学福清分校电子与信息工程系,福建 福州;

关键词: 螺旋副切比雪夫缩短算法运动学分析空间连杆机构Screw Pair Chebyshev Shortening Algorithm Kinematic Analysis Spatial Linkage Mechanism

摘要:
本文研究带有螺旋副(H)机器人运动学建模方法问题,提出用于不规则地形下的螺旋副(H)移动机器人运动学建模方法——切比雪夫缩短算法。在分析带有螺旋副(H)空间连杆机构的运动学分析基础上,建立机构的位姿方程的矢量表达式。以空间HSSH机构为例,对其进行运动分析。先根据机构的封闭环建立矢量方程对HSSH机构建立运动分析模型,得到运动分析方程,采用矢量运算消除一些中间变量,得出关于度数和正弦、余弦的方程,利用切比雪夫多项式将正弦和余弦转化为度的关系式,从而求解度数。通过误差分析可知,切比雪夫函数逼近方法可以近似求解具有螺旋副(H)的空间机构学运动学问题。本文从中阐述切比雪夫缩短算法的方法和过程,并分析切比雪夫缩短算法的特点,用试验和仿真验证该建模方法的正确性。

Abstract: In this paper, kinematic modeling of the robot with a screw pair (H) has been studied. Irregular terrain of the screw pair (H) mobile robot kinematics modeling method—Chebyshev shortening algorithm has been put forward. Based on the analysis of kinematic analysis of spatial linkage mechanism with a screw pair (H), the vector expression of the position and attitude equation of the mechanism has been established. Taking the space HSSH mechanism as an example, the motion analysis has been carried out. According to the established vector equation of HSSH establish motion analysis model of closed loop, motion analysis equations and vector operation are adopted to eliminate intermediate variables by using the Chebyshev polynomials of sine and cosine transformation degree, thus solving degree; Chebyshev approximation method can provide approximate solutions to screw pair (H) of spatial mechanism kinematics problem by measuring means of error. This paper presents the method and the process of Chebyshev shortening algorithm and analyzes the characteristics of the Chebyshev shortening algorithm. The correctness of the proposed modeling method has been verified through experimental studies and simulations.

文章引用: 倪振松 , 吴瑞坤 (2016) 带有螺旋副空间四杆机构运动学建模方法。 力学研究, 5, 1-9. doi: 10.12677/IJM.2016.51001

参考文献

[1] Su, H.J., Collins, C.L. and McCarthy, J.M. (2002) Classification of RRSS Linkages. Mechanism and Machine Theory, 37, 1413-1433.
http://dx.doi.org/10.1016/S0094-114X(02)00060-5

[2] Marble, D.S. and Pennock, R.G. (2000) Alge-braic-Geometric Properties of the Coupler Curves of the RCCC Spatial Linkages Based on Reliability Concept. Mechanism and Machine Theory, 35, 675-693.
http://dx.doi.org/10.1016/S0094-114X(99)00039-7

[3] Shi, Z. (1997) Synthesis of Mechanical Error in Spatial Linkages Based on Reliability Concept. Mechanism and Machine Theory, 32, 255-259.
http://dx.doi.org/10.1016/S0094-114X(96)00049-3

[4] Sun, J.W., Chu, J.K. and Wei, J. (2008) Research on RCCC Mechanism Function Generation by Using Numerical Atlas Method. China Mechanical Engineering, 19, 713-717.

[5] 倪振松, 廖启征, 魏世民, 等. 基于切比雪夫逼近的空间RSSH机构运动分析[J]. 北京工业大学学报, 2011, 37(12): 1767-1772.

[6] 肖蒙, 李军. 切比雪夫多项式及其插值法在检测中的应用研究[J]. 自动化与仪器仪表, 2006(3): 13-16.

[7] 张云芝, 刘付永红, 林万荣. 用切比雪夫最佳逼近理论求拟合直线方法[J]. 华南理工大学学报, 1999(1): 117-119.

[8] Xie, C.-X. and Li, L. (2008) Innovative Design and Application of Space Agencies. Machinery Industry Press, Beijing.

分享
Top