Research Progress for Relative Treatment Targets in Alzheimer’s Disease

作者: 诸丽华 , 何 玲 :中国药科大学,药学院,药理系,江苏 南京 ;

关键词: 阿尔茨海默病神经递质G蛋白偶联受体Alzheimer’s Disease Neurotransmitter G Protein-Coupled Receptors

阿尔茨海默病(Alzheimer’s disease, AD)是一种以认知障碍为主要特征的退行性神经疾病。神经元和突触损伤伴随神经递质功能异常,以及Aβ沉积和神经纤维缠结一直被认为是AD的主要标记。但由于病因复杂,目前针对该疾病仍无有效的治疗手段。本文将从中枢神经系统主要的神经递质及其受体方面对阿尔茨海默病治疗相关靶点进行综述。

Abstract: Alzheimer’s disease is neurodegenerative disease mainly characterized by cognitive impairment. Neuron and synapse loss together with neurotransmitter dysfunction have, along with Abdeposition and neurofibrillary tangles, been recognized as hallmarks of AD. However, there is still no a curative treatment for this devastating disease due to complexity of the pathophysiology of the disease. This article reviews relative treatment targets in Alzheimer’s disease from the aspects of main neurotransmitter and receptors in the central nervous system.

文章引用: 诸丽华 , 何 玲 (2016) 阿尔茨海默病治疗相关靶点研究进展。 药物资讯, 5, 1-7. doi: 10.12677/PI.2016.51001


[1] Wright, J.W., Kawas, L.H. and Harding, J.W. (2015) The Development of Small Molecule an Giotensin IV Analogs to Treat Alzheimer’s and Parkinson’s Diseases. Progress in Neurobiology, 125, 26-46.

[2] Rosenmann, H. (2012) CSF Biomarkers for Amyloid and Tau Pathology in Alzheimer’s Disease. Journal of Molecular Neuroscience, 47, 1-14.

[3] Kumar, U. and Patel, S.C. (2007) Immunohistochemical Loca-lization of Dopamine Receptor Subtypes (D1R-D5R) in Alzheimer’s Disease Brain. Brain Research, 1131, 187-196.

[4] Bethus, I., Tse, D. and Morris, R.G. (2010) Dopamine and Memory: Modulation of the Persistence of Memory for Novel Hippocampal NMDA Receptor-Dependent Paired Asso-ciates. The Journal of Neuroscience, 30, 16 10-18.

[5] Furini, C.R.G., Myskiw, J.C., Schmidt, B.E., Marcondes, L.A. and Izquierdo, I. (2014) D1 and D5 Dopamine Receptors Participate on the Consolidation of Two Different Memories. Behavioural Brain Research, 271, 212-217.

[6] Nakajima, S., Gerretsen, P., Takeuchi, H., et al. (2013) The Po-tential Role of Dopamine D3 Receptor Neurotransmission in Cognition. European Neuropsychopharmacology, 23, 799-813.

[7] Martorana, A., Di Lorenzo, F., Esposito, Z., et al. (2013) Dopamine D2-Agonist Rotigotine Effects on Cortical Excitability and Central Cholinergic Transmission in Alzheimer’s Disease Patients. Neuropharmacology, 64, 108-113.

[8] Kemppainen S., Lindholm P., Galli E., et al. (2015) Cerebral Dopamine Neurotrophic Factor Improves Long-Term Memory in APP/PS1 Transgenic Mice Modeling Alz-heimer’s Disease As Well As Inwild-Type Mice. Behavioural Brain Research, 291, 1-11.

[9] 何玲, 王聪, 孙宝娟. 针对阿尔茨海默病治疗的G蛋白偶联受体及其药物研究进展[J]. 国际药学研究杂志, 2013, 40(3): 25-26.

[10] Maher-Edwards, G., Zvartau-Hind, M., Hunter, A.J., Gold, M., Hopton, G., Jacobs, G., et al. (2010) Double-Blind, Controlled Phase II Study of a 5-HT6 Re-ceptor Antagonist, SB-742457, in Alzheimer’s Disease. Current Alzheimer Research, 7, 374-385.

[11] Sarkisyan, G. and Hedlund, P.B. (2009) The 5-HT7 Receptor Is Involved in Allocentric Spatial Memory Information Processing. Behavioural Brain Research, 202, 26-31.

[12] Fredholm, B.B., Chen, J.-F., Cunha, R.A., Svenningsson, P. and Vaugeois, J.-M. (2005) Adenosine and Brain Function. International Review of Neurobiology, 63, 191-270.

[13] Rebola, N., Lujan, R., Cunha, R.A. and Mulle, C. (2008) Adenosine A2A Receptors Are Essential for Long-Term Potentiation of NMDA-EPSCs at Hippocampal Mossy Fiber Synapses. Neuron, 57, 121-134.

[14] Higley, M.J. and Sabatini, B.L. (2010) Competitive Regulation of Synaptic Ca2+ Influx by D2 Dopamine and A2A Adenosine Receptors. Nature Neuroscience, 13, 958-966.

[15] Albasanz, J.L., Perez, S., Barrachina, M., Ferrer, I. and Martín, M. (2008) Up-Regulation of Adenosine Receptors in the Frontal Cortex in Alzheimer’s Disease. Brain Pathology, 18, 211-219.

[16] Arendash, G.W., Schleif, W., Rezai-Zadeh, K., et al. (2006) Caffeine Protects Alzheimer’s Mice against Cognitive Impairment and Reduces Brain Beta-Amyloid Production. Neuroscience, 142, 941-952.

[17] Chauhan, N.B., Siegel, G.J. and Feinstein, D.L. (2005) Propentofylline Attenuates Tau Hyperphosphorylation in Alzheimer’s Swedish Mutant Model Tg2576. Neuropharma-cology, 48, 93-104.

[18] Haglund, M., Sjobeck, M. and Englund, E. (2006) Locus ceruleus Degeneration Is Ubiquitous in Alzheimer’s Disease: Possible Implications for Diagnosis and Treatment. Neuropathology, 26, 528-532.

[19] Counts, S.E. and Mufson, E.J. (2010) Noradrenaline Activation of Neurotrophic Pathways Protects against Neuronal Amyloid Toxicity. Journal of Neurochemistry, 113, 649-660.

[20] Chen, Y.J., Peng, Y., Che, P.L., Gannon, M., et al. (2014) α2A Adrenergic Receptor Promotes Amyloidogenesis through Disrupting APP-SorLA Interaction. Pro-ceedings of the National Academy of Sciences of the United States of America, 111, 17296-17301.

[21] 葛培兵, 丁高中, 戚晓红, 袁艺标, 周红. β2肾上腺素受体对Aβ1-40诱导阿尔茨海默病大鼠脑内胆碱能水平的影响[J]. 南京医科大学学报(自然科学版), 2012, 32(6): 754-757.

[22] 孙金霞, 王静, 吴芹. 肾素–血管紧张素系统与阿尔茨海默病[J]. 医学综述, 2014, 20(11): 1926-1928.

[23] Braszko, J.J., Walesiuk, A. and Wielgat, P. (2006) Cognitive Effects Attributed to Angiotensin II May Result from Its Conversion to Angiotensin IV. Journal of Renin-Angiotensin-Aldosterone System, 7, 168-174.

[24] Wright, J.W., Kawas, L.H. and Harding, J.W. (2015) The Devel-opment of Small Molecule Angiotensin IV Analogs to Treat Alzheimer’s and Parkinson’s Diseases. Process in Neuro-biology, 125, 26-46.

[25] Hajjar, I.M., Keown, M., Lewis, P., et al. (2008) Angi-otensin Converting Enzyme Inhibitors and Cognitive and Functional Decline in Patients with Alzheimer’s Disease: An Observational Study. American Journal of Alzheimer’s Disease and Other Dementias, 23, 77-83.

[26] Zhang, W., Li, P., Hu, X., Zhang, F., Chen, J. and Gao, Y. (2011) Omega-3 Polyunsaturated Fatty Acids in the Brain: Metabolism and Neuroprotection. Frontiers in Bioscience, 17, 2653-2670.

[27] Kelly, L., Grehan, B., Chiesa, A.D., O’Mara, S.M., Downer, E., Sahyoun, G., Massey, K.A., Nicolaou, A. and Lynch, M.A. (2011) The Polyunsaturated Fatty Acids, EPA and DPA Exert a Protective Effect in the Hippocampus of the Aged Rat. Neurobiology of Aging, 32, 2318.e1-2318.e15.

[28] Luchtman, D.W. and Song, C. (2013) Cognitive Enhancement by Omega-3 Fatty Acids from Childhood to Old Age: Findings from Animal and Clinical Studies. Neu-ropharmacology, 64, 550-565.

[29] Khan, M.Z. and He, L. (2015) The Role of Polyunsatu-rated Fatty Acids and GPR40 Receptor in Brain. Neuropharmacology. (in press)

[30] Van Waarde, A., Ramakrishnan, N.K., Rybczynska, A.A., Elsinga, P.H., et al. (2011) The Cholinergic System, Sigma-1 Receptors and Cognition. Behavioural Brain Research, 221, 543-554.

[31] 印俊. Sigma-1受体缺乏对Aβ诱导神经元死亡的作用及其分子机制[D]: [硕士学位论文]. 南京: 南京医科大学, 2014.

[32] Zvejniece, L., Vavers, E., Svalbe, B., et al. (2014) The Cognition-Enhancing Activity of E1R, a Novel Positive Allosteric Modulator of Sigma-1 Receptors. British Journal of Pharmacology, 171, 761-771.

[33] 袁水霞, 李霞, 于萍. 脑内GABA受体在学习记忆中的作用[J]. 首都师范大学学报: 社会科学版, 2009(S4): 156-160.

[34] Luchetti, S., Huitingga, I. and Swaab, D.F. (2011) Neuros-teroid and GABA-A Receptor Alterations in Alzheimer’s Disease, Parkinson’s Disease and Multiple Sclerosis. Neu-roscience, 191, 6-21.

[35] 毕丹蕾, 文朗, 熊伟, 申勇. 阿尔茨海默病的可能药物靶点和临床治疗研究进展[J]. 中国药理学与毒理学杂志, 2015, 29(4): 507-536.

[36] Canas, P.M., Simões, A.P., Rodrigues, R.J. and Cunha, R.A. (2014) Predominant Loss of Glutamatergic Terminal Markers in a β-Amyloid Peptide Model of Alzheimer’s Disease. Neuropharmacology, 76, 51-56.