﻿ 系数为LR-型模糊数的模糊Logistic回归模型的参数估计

# 系数为LR-型模糊数的模糊Logistic回归模型的参数估计Parameter Estimation of the Fuzzy Logistic Regressive Model with LR Typed Fuzzy Coefficients

Abstract: The classical logistic regression model is appropriate for the problems of binary variable. Since the observations were not crisp value, response variable was often between 0 and 1 and no probability distribution can be considered for response variable; hence error can not be completely regarded as random aspect. Therefore, by combining the classical logistic regression model with fuzzy sets theory, a fuzzy logistic regression model of crisp input and fuzzy output data is constructed; the coefficients and outputs are LR type fuzzy numbers. Considering the possibilities of success instead of the probabilities, the possibilities of success are described by some linguistic terms. Then the distance between two fuzzy numbers is constructed by cut sets. The least squares estimation of fuzzy parameters is obtained in proposed model based on the distance. Finally, the capability index MSI = 0.54 showed that the proposed model is effective of an ordinary one in the modeling Lupus.

 Tanka, H., Uejima, S. and Asai, K. (1982) Linear Regression Analysis with Fuzzy Model. IEEE Transactions on Sys-tems, Man, and Cybernetics, 12, 903-907.
http://dx.doi.org/10.1109/TSMC.1982.4308925

 Celmins, A. (1987) Least Squares Model Fitting to Fuzzy Vector Data. Fuzzy Sets System, 22, 245-269.
http://dx.doi.org/10.1016/0165-0114(87)90070-4

 Diamond, P. (1987) Least Squares Fitting of Several Fuzzy Variables. Proceedings of the second IFSA Congress, Tokyo, 20-25.

 Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons, New York.
http://dx.doi.org/10.1002/0471249688

 Yang, M. and Chen, H. (2004) Fuzzy Class Logistic Regression Analysis. Fuzziness and Knowledge Based Systems, 12, 761-780.
http://dx.doi.org/10.1142/S0218488504003193

 Pourahmad, S., Ayatollahi, S.M.T. and Taheri, S.M. (2001) Fuzzy Logistic Regression: A New Possibilistic Model and Its Application in Clinical Vague Status. Iranian Journal of Fuzzy Systems, 1, 1-17.

 Pourahmad, S., Ayatollahi, S.M.T., Taheri, S.M., et al. (2011) Fuzzy Logistic Regression Based on the Least Squares Approach with Application in Clinical Studies. Computers and Mathematics with Application, 62, 3353-3365.
http://dx.doi.org/10.1016/j.camwa.2011.08.050

 Namdari, M., Yoon, J.H., Abadi, A., et al. (2015) Fuzzy Logistic Regression with Least Absolute Deviations Estimators. Soft Computing, 19, 909-917.
http://dx.doi.org/10.1007/s00500-014-1418-2

 梁艳, 魏立力. 系数为LR-型模糊数的模糊线性最小二乘回归[J]. 模糊系统与数学, 2007, 21(3): 112-117.

 张爱武. 系数为LR-型模糊数的模糊回归模型的参数估计[J]. 模糊系统与数学, 2013, 27(6): 140-147.

 岳立柱. 系数为一般模糊数的多元线性回归模型[J]. 统计与决策, 2015(3): 72-74.

 Xu, R. and Li, C. (2001) Multidimensional Least Squares Fitting with a Fuzzy Model. Fuzzy Sets and Systems, 119, 215-223.
http://dx.doi.org/10.1016/S0165-0114(98)00350-9

 Taheri, S.M. and Kel-kinnama, M. (2012) Fuzzy Linear Regression Based on Least Absolutes Deviations. Iranian Journal of Fuzzy Systems, 9, 121-140.

 Kelkinnama, M. and Taheri, S.M. (2012) Fuzzy Least Absolutes Regression Using Shape Preserving Operations. Information Sciences, 214, 10 5-120.

 Domr, M., Zain, R., Kareem, S.A., et al. (2007) An Adaptive Fuzzy Regression Model for the Prediction of Dichotomous Response Variables. Computational Science and Applica-tions, 15, 14-19.

Top