﻿ 基于时间序列分析的上海地铁16号线客流预测—以临港大道站为例

# 基于时间序列分析的上海地铁16号线客流预测—以临港大道站为例Prediction of Shanghai Metro Line 16 Passenger Flow Based on Time Series Analysis—with Lingang Avenue Station as a Study Case

Abstract: Problems emerge along with the continuous development of urban rail transit, and how to predict the passenger flow to improve the efficiency of the rail transit operation by the scientific method has caused widely public concern. Time series analysis is the mainstream of forecasting method. And ARIMA model acts on all kinds of sequences, so it is the most common time series prediction method by far. This study proposes Autoregressive Integrated Moving Average Model (ARIMA model) to predict the passenger flow data of the line 16 Lingang Avenue Station based on the historical datum through time series analysis in order to improve the operational efficiency of the urban rail transit and effective cohesion with buses in Lingang area. We utilize the autocorrelation and partial autocorrelation function to preliminarily judge and identify the parameters of ARIMA model.

[2] 张杰, 刘小明, 贺玉龙, 陈永胜. 基于时间序列的我国铁路客流量预测[J]. 统计与咨询, 2008: 20-21.

[3] 裴武, 陈凤, 程立勤, 交通量时间序列ARIMA预测技术研究[J]. 山西科技, 2009(1): 75-79.

[4] 祁伟. 李晔, 汪作新. 季节性ARIMA模型在稀疏交通流下的预测方法[J]. 公路交通科技, 2014, 31(4): 130-135.

[5] 常国珍, 张前登. 基于乘积ARIMA模型的城市轨道交通进出站客流量预测[J]. 北京交通大学学报, 2014, 38(2): 135-140.

[6] 王燕. 应用时间序列分析[M]. 北京: 中国人民大学出版社, 2005: 64-68, 146.

[7] 杜强, 贾丽艳. SPSS统计分析从入门到精通[M]. 北京: 人民邮电出版社, 2011.

Top