Topological Phase Transition Driven by Spin-Orbit Coupling in HgMnTe Quantum Wells

作者: 陈 锐 , 周 斌 :湖北大学物理与电子科学学院,湖北 武汉;

关键词: 量子自旋霍尔效应量子反常霍尔效应自旋轨道耦合拓扑相变Quantum Spin Hall Effect Quantum Anomalous Hall Effect Spin-Orbit Coupling Topological Phase Transition

在能带反转的HgTe量子阱中,体态内存在着受拓扑保护的无能隙的螺旋边界态为特征的量子自旋霍尔效应。在HgTe量子阱中掺入磁性原子(例如锰)后,磁性HgMnTe量子阱将会出现量子反常霍尔效应。本文我们讨论了由体反演不对称产生的自旋轨道耦合作用在HgMnTe量子阱中诱导的拓扑相变。首先,通过解析计算自旋陈数,我们发现当自旋轨道耦合强度超过某个临界值的时候,在HgTe量子阱中,发生了从拓扑绝缘体到普通绝缘体的拓扑相变。在交换场和自旋轨道耦合的共同作用下,通过数值计算自旋陈数,我们画出了在不同参数下的拓扑相图。我们发现,当锰掺杂引起的交换场系数GEGH < 0时,拓扑相图中出现了三个区域:普通绝缘体,拓扑绝缘体以及量子反常霍尔效应。当GEGH > 0时,出现了新的体态能隙闭合区域。然而随着自旋轨道耦合作用的增加,将会在该能隙闭合区域重新打开一个能隙。

Abstract: In the inverted band HgTe quantum wells (QWs), there are quantum spin Hall effects characterized by topological protected gapless helical edge states within the bulk energy gap. By doping magnetic atoms (such as Mn) in HgTe layer, quantum anomalous Hall effects (QAH) may occur in magnetic HgMnTe QWs. In this paper, we investigate the effect of spin-orbit coupling induced by bulk inversion asymmetry on HgMnTe QWs with respect to topological phase transition. Firstly, by the method of analytic calculation of spin Chern number in HgTe QWs, a topological phase transition from topological insulators (TI) to normal insulators (NI) is presented in HgTe QWs when the strength of spin-orbit coupling exceeds a critical value. On the combined effect of spin-orbit coupling and exchange filed, by numerical calculating spin Chern number, we plot the topological phase diagram with various parameters. When the coefficients GE and GH depicting the exchange field satisfy GEGH < 0, three regions appear on the phase diagram, i.e., NI, TI and QAH. When GEGH > 0, a new region of gap closing appears and a nonzero spin-orbit coupling will open a gap in this region.

文章引用: 陈 锐 , 周 斌 (2016) HgMnTe量子阱中自旋轨道耦合诱导的拓扑相变。 凝聚态物理学进展, 5, 1-8. doi: 10.12677/CMP.2016.51001


[1] Hasan, M.Z. and Kane, C.L. (2010) Colloquium: Topological Insulators. Reviews of Modern Physics, 82, 3045.

[2] Qi, X.L. and Zhang, S.C. (2011) Topological Insulators and Superconductors. Reviews of Modern Physics, 83, 1057.

[3] Kane, C.L. and Mele, E.J. (2005) Z2 Topological Order and the Quantum Spin Hall Effect. Physical Review Letters, 95, Article ID: 146802.

[4] Kane, C.L. and Mele, E.J. (2005) Quantum Spin Hall Effect in Graphene. Physical Review Letters, 95, Article ID: 226801.

[5] Yao, Y., Ye, F., Qi, X.L., et al. (2007) Spin-Orbit Gap of Graphene: First-Principles Calculations. Physical Review B, 75, Article ID: 041401.

[6] Bernevig, B.A., Hughes, T.L. and Zhang, S.C. (2006) Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science, 314, 1757.

[7] König, M., Wiedmann, S., Brüne, C., et al. (2007) Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science, 318, 766-770.

[8] Zhou, B., Lu, H.Z., Chu, R.L., et al. (2008) Finite Size Effects on Helical Edge States in a Quantum Spin-Hall System. Physical Review Letters, 101, Article ID: 246807.

[9] Cheng, Z. and Zhou, B. (2014) Finite Size Effects on Helical Edge States in HgTe Quantum Wells with the Spin-Orbit Coupling Due to Bulk- and Structure-Inversion Asymmetries. Chinese Physics B, 23, Article ID: 037304.

[10] Cheng, Z., Chen, R. and Zhou, B. (2015) Finite Size Effects on the Quantum Spin Hall State in HgTe Quantum Wells under Two Different Types of Boundary Conditions. Chinese Physics B, 24, Article ID: 067304.

[11] 盛利. 自旋陈数理论和时间反演对称破缺的量子自旋霍尔效应[J]. 物理学进展, 2014, 34(1): 10-27.

[12] Lu, H.Z., Shan, W.Y., Yao, W., et al. (2010) Massive Dirac Fermions and Spin Physics in an Ultrathin Film of Topological Insulator. Physical Review B, 81, Article ID: 115407.

[13] Li, H., Sheng, L., Shen, R., et al. (2013) Stabilization of the Quantum Spin Hall Effect by Designed Removal of Time- Reversal Symmetry of Edge States. Physical Review Letters, 110, Article ID: 266802.

[14] Beugeling, W., Liu, C.X., Novik, E.G., et al. (2012) Reentrant Topological Phases in Mn-Doped HgTe Quantum Wells. Physical Review B, 85, Article ID: 195304.

[15] Fu, H.H., Lü, J.T. and Gao, J.H. (2014) Finite-Size Effects in the Quantum Anomalous Hall System. Physical Review B, 89, Article ID: 205431.

[16] Liu, C.X., Qi, X.L., Dai, X., et al. (2008) Quantum Anomalous Hall Effect in Hg1-yMnyTe Quantum Wells. Physical Review Letters, 101, Article ID: 146802.

[17] Jiang, Z.F., Chu, R.L. and Shen, S.Q. (2010) Elec-tric-Field Modulation of the Number of Helical Edge States in Thin- Film Semiconductors. Physical Review B, 81, Article ID: 115322.

[18] Fu, B., Zheng, H., Li, Q., et al. (2014) Topological Phase Transition Driven by a Spatially Periodic Potential. Physical Review B, 90, Article ID: 214502.

[19] Sheng, D.N., Weng, Z.Y., Sheng, L., et al. (2006) Quantum Spin-Hall Effect and Topologically Invariant Chern Numbers. Physical Review Letters, 97, Article ID: 036808.

[20] Prodan, E. (2009) Robustness of the Spin-Chern Number. Physical Review B, 80, Article ID: 125327.

[21] Li, H., Sheng, L., Sheng, D.N., et al. (2010) Chern Number of Thin Films of the Topological Insulator Bi2Se3. Physical Review B, 82, Article ID: 165104.