量子点作为荧光离子探针应用的研究进展
Advances of Quantum Dots as Fluorescence Ion Probes

作者: 宋国龙 , 韩义忠 , 崔正阳 , 孔祥东 :浙江理工大学生命科学学院,生物材料与海洋生物资源研究所,浙江 杭州;

关键词: 量子点离子探针金属离子阴离子Quantum Dots Ion Probes Metal Ions Anions

摘要:
量子点是一种准零维的纳米材料,具有许多优异的光学性能,如宽激发、窄发射、强度高、寿命长、抗漂白等。因此,其作为离子探针具有灵敏度高、设备简单、重现性好、可用于现场快速检测等优点。本文综述了量子点作为荧光离子探针在金属离子、阴离子、小分子等检测方面的应用进展。

Abstract: Quantum dots (QDs), a sort of quasi zero-dimensional (0-D) nanomaterials, possess numerous ex-cellent optical properties, such as wide excitation, narrow emission, strong intensity, long lifetime, and stable fluorescence etc. Therefore, QDs as fluorescence ion probes show many advantages like high sensitivity, simple instrument, excellent repeatability, and rapid spot detection. This paper reviews the recent advances of QDs as fluorescence ion probes in applications of detecting metal ions, anions, and small molecules etc.

文章引用: 宋国龙 , 韩义忠 , 崔正阳 , 孔祥东 (2016) 量子点作为荧光离子探针应用的研究进展。 材料科学, 6, 95-101. doi: 10.12677/MS.2016.61012

参考文献

[1] Isarov, A.V. and Chrysochoos, J. (1997) Optical and Photochemical Properties of Nonstoichiometric Cadmium Sulfide Nanoparticles: Surface Modification with Copper (II) Ions. Langmuir, 13, 3142-3149.
http://dx.doi.org/10.1021/la960985r

[2] Chen, Y. and Rosenzweig, Z. (2002) Luminescent CdS Quantum Dots as Selective Ion Probes. Analytical Chemistry, 74, 5132-5138.
http://dx.doi.org/10.1021/ac0258251

[3] Wu, P., Li, Y. and Yan, X.P. (2009) CdTe Quantum Dots (QDs) Based Kinetic Discrimination of Fe2+ and Fe3+, and CdTe QDs-Fenton Hybrid System for Sensitive Photoluminescent Detection of Fe2+. Analytical Chemistry, 81, 6252- 6257.
http://dx.doi.org/10.1021/ac900788w

[4] Lakowicz, J.R., Gryczynski, I., Gryczynski, Z. and Murphy, C.J. (1999) Luminescence Spectral Properties of CdS Nanoparticles. The Journal of Physical Chemistry B, 103, 7613-7620.
http://dx.doi.org/10.1021/jp991469n

[5] Li, H., Han, C. and Zhang, L. (2008) Synthesis of Cadmium Selenide Quantum Dots Modified with Thiourea Type Ligands as Fluorescent Probes for Iodide Ions. Journal of Materials Chemistry, 18, 4543-4548.
http://dx.doi.org/10.1039/b806485g

[6] Jin, W.J., Costa-Fernández, J.M., Pereiro, R. and Sanz-Medel, A. (2004) Surface-Modified CdSe Quantum Dots as Luminescent Probes for Cyanide Determination. Analytica Chimica Acta, 522, 1-8.
http://dx.doi.org/10.1016/j.aca.2004.06.057

[7] Jin, W.J., Fernández-Argüelles, M.T., Costa-Fernández, J.M., Pereiro, R. and Sanz-Medel, A. (2005) Photoactivated Luminescent CdSe Quantum Dots as Sensitive Cyanide Probes in Aqueous Solutions. Chemical Communications, No. 7, 883-885.
http://dx.doi.org/10.1039/b414858d

[8] Susha, A.S., Javier, A.M., Parak, W.J. and Rogach, A.L. (2006) Luminescent CdTe Nanocrystals as Ion Probes and pH Sensors in Aqueous Solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281, 40-43.
http://dx.doi.org/10.1016/j.colsurfa.2006.02.014

[9] Zhang, Y., Deng, Z.T., Yue, J.C., Tang, F.Q. and Wei, Q. (2007) Using Cadmium Telluride Quantum Dots as a Proton Flux Sensor and Applying to Detect H9 Avian Influenza Virus. Analytical Biochemistry, 364, 122-127.
http://dx.doi.org/10.1016/j.ab.2007.02.031

[10] Deng, Z., Zhang, Y., Yue, J., Tang, F. and Wei, Q. (2007) Green and Orange CdTe Quantum Dots as Effective pH- Sensitive Fluorescent Probes for Dual Simultaneous and Independent Detection of Viruses. The Journal of Physical Chemistry B, 111, 12024-12031.
http://dx.doi.org/10.1021/jp074609z

[11] Wang, Y.Q., Ye, C., Zhu, Z.H. and Hu, Y.Z. (2008) Cadmium Telluride Quantum Dots as pH-Sensitive Probes for Tiopronin Determination. Analytica Chimica Acta, 610, 50-56.
http://dx.doi.org/10.1016/j.aca.2008.01.015

[12] Huang, C., Liu, S., Chen, T. and Li, Y. (2008) A New Approach for Quantitative Determination of Glucose by Using CdSe/ZnS Quantum Dots. Sensors and Actuators B: Chemical, 130, 338-342.
http://dx.doi.org/10.1016/j.snb.2007.08.021

[13] Liang, J., Huang, S., Zeng, D., He, Z., Ji, X., Ai, X., et al. (2006) CdSe Quantum Dots as Luminescent Probes for Spironolactone Determination. Talanta, 69, 126-130.
http://dx.doi.org/10.1016/j.talanta.2005.09.004

[14] Chen, J., Xu, F., Jiang, H., Hou, Y., Rao, Q., Guo, P., et al. (2009) A Novel Quantum Dot-Based Fluoroimmunoassay Method for Detection of Enrofloxacin Residue in Chicken Muscle Tissue. Food Chemistry, 113, 1197-1201.
http://dx.doi.org/10.1016/j.foodchem.2008.08.006

[15] Li, Y., Huang, H., Ma, Y. and Tong, J. (2014) Highly Sensitive Fluorescent Detection of Dihydroxybenzene Based on Graphene Quantum Dots. Sensors and Actuators B—Chemical, 205, 227-233.
http://dx.doi.org/10.1016/j.snb.2014.08.074

[16] Diao, X.L., Xia, Y.S., Zhang, T.L., Li, Y. and Zhu, C.Q. (2007) Fluorescence-Detecting Cationic Surfactants Using Luminescent CdTe Quantum Dots as Probes. Analytical and Bio-analytical Chemistry, 388, 1191-1197.
http://dx.doi.org/10.1007/s00216-007-1319-7

[17] Li, H. and Han, C. (2008) Sonochemical Synthesis of Cyclo-dextrin-Coated Quantum Dots for Optical Detection of Pollutant Phenols in Water. Chemistry of Materials, 20, 6053-6059.
http://dx.doi.org/10.1021/cm8009176

[18] Shi, G.H., Shang, Z.B., Wang, Y., Jin, W.J. and Zhang, T.C. (2008) Fluorescence Quenching of CdSe Quantum Dots by Nitroaromatic Explosives and Their Relative Compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70, 247-252.
http://dx.doi.org/10.1016/j.saa.2007.07.054

[19] Tan, X., Liu, S., Shen, Y., He, Y. and Yang, J. (2014) Quantum Dots (QDs) Based Fluorescence Probe for the Sensitive Determination of Kaempferol. Spectrochimica Acta Part A—Molecular and Biomolecular Spectroscopy, 133, 66-72.
http://dx.doi.org/10.1016/j.saa.2014.05.032

[20] Khan, S., Carneiro, L.S.A., Romani, E.C., Larrude, D.G. and Aucelio, R.Q. (2014) Quantification of Thyroxine by the Selective Photoluminescence Quenching of L-Cysteine-ZnS Quantum Dots in Aqueous Solution Containing Hexadecyltrimethylammonium Bromide. Journal of Luminescence, 156, 16-24.
http://dx.doi.org/10.1016/j.jlumin.2014.07.003

[21] Martin Yerga, D., Begona Gonzalez-Garcia, M. and Costa Garcia, A. (2014) Electrochemical Immunosensor for Anti- Tissue Transglutaminase Antibodies Based on the in Situ Detection of Quantum Dots. Talanta, 130, 598-602.
http://dx.doi.org/10.1016/j.talanta.2014.07.010

[22] Myung, N., Bae, Y. and Bard, A.J. (2003) Enhancement of the Photoluminescence of CdSe Nanocrystals Dispersed in CHCl3 by Oxygen Passivation of Surface States. Nano Letters, 3, 747-749.
http://dx.doi.org/10.1021/nl034165s

[23] Chizhov, A.S., Rumyantseva, M.N., Vasiliev, R.B., Filatova, D.G., Drozdov, K.A., Krylov, I.V., et al. (2014) Visible Light Activated Room Temperature Gas Sensors Based on Nanocrystalline ZnO Sensitized with CdSe Quantum Dots. Sensors and Actuators B: Chemical, 205, 305-312.
http://dx.doi.org/10.1016/j.snb.2014.08.091

[24] Raymo, F.M. and Yildiz, I. (2007) Luminescent Chemosensors Based on Semiconductor Quantum Dots. Physical Chemistry Chemical Physics: PCCP, 9, 2036-2043.
http://dx.doi.org/10.1039/b616017d

[25] Miao, Y., Zhang, Z., Gong, Y. and Yan, G. (2014) Phosphorescent Quantum Dots/Doxorubicin Nanohybrids Based on Photoinduced Electron Transfer for Detection of DNA. Biosensors and Bioelectronics, 59, 300-306.
http://dx.doi.org/10.1016/j.bios.2014.03.076

[26] Sandros, M.G., Gao, D. and Benson, D.E. (2005) A Modular Nanoparticle-Based System for Reagentless Small Molecule Biosensing. Journal of the American Chemical Society, 127, 12198-12199.
http://dx.doi.org/10.1021/ja054166h

[27] Wu, P. and Yan, X.P. (2010) A Simple Chemical Etching Strategy to Generate “Ion-Imprinted” Sites on the Surface of Quantum Dots for Selective Fluorescence Turn-On Detecting of Metal Ions. Chemical Communications, 46, 7046- 7048.
http://dx.doi.org/10.1039/c0cc01762k

[28] Song, H., Yang, M., Fan, X. and Wang, H. (2014) Turn-On Electro-chemiluminescence Sensing of Cd2+ Based on CdTe Quantum Dots. Spectrochimica Acta Part A: Molecular and Bio-molecular Spectroscopy, 133, 130-133.
http://dx.doi.org/10.1016/j.saa.2014.05.053

[29] Chen, Y.J. and Yan, X.P. (2009) Chemical Redox Modulation of the Surface Chemistry of CdTe Quantum Dots for Probing Ascorbic Acid in Biological Fluids. Small, 5, 2012-2018.
http://dx.doi.org/10.1002/smll.200900291

分享
Top