具有可变核的多线性积分算子在变指数Lebesgue空间的有界性
The Boundedness of Multilinear Fractional Integral Operators with Variable Kernel on Variable Exponent Lebesgue Spaces

作者: 万秋阅 :丽水学院工程与设计学院,浙江 丽水;浙江理工大学理学院,浙江 杭州; 吴慧伶 , 兰家诚 :丽水学院工程与设计学院,浙江 丽水;

关键词: 多线性分数次积分可变核变指数Lebesgue空间Multilinear Fractional Integral Variable Kernel Variable Exponent Lebesgue Spaces

摘要:
本文研究了具有可变核的多线性分数次积分算子和相对应的极大算子的有界性,通过多线性分数次积分与对应的分数次积分的联系,将多线性转化为较为简单的分数次积分,从而得到算子 上是有界的。

Abstract: In this paper, the authors study the boundedness of a class of multilinear fractional integral and the maximal operators with variable kernel. Under some assumptions, it is obtained that these operators and are both bounded from to by using the connection between multilinear and fractional integral operators and converting multilinear into simple fractional integral.

文章引用: 万秋阅 , 吴慧伶 , 兰家诚 (2016) 具有可变核的多线性积分算子在变指数Lebesgue空间的有界性。 理论数学, 6, 72-80. doi: 10.12677/PM.2016.61011

参考文献

[1] Calderón, A. and Zygmund, A. (1989) Singular Integral Operators and Differential Equations. Springer, Netherlands, Vol. 41, 221-238.

[2] Meyer, Y. (1990) Ondelettes ét opérateurs, I, II. Herman, Paris.

[3] Orlicz, W. (1931) Uber konjugierte Exponentenfolgen. Studia Mathematica, 3, 200-212.

[4] Calderón, A. and Zygmund, A. (1979) On Singular Integral with Variable Kernels. Applicable Analysis, 7, 221-238.

[5] Muckenhoupt, B. and Wheeden, R.L. (1971) Weighted Norm Inequalities for Singular and Fractional Integrals. Transactions of the American Mathematical Society, 161, 249-258.

[6] Ding, Y., Chen, J.C. and Fan, D.S. (2002) A Class of Integral Operators with Variable Kernels on Hardy Spaces. Chinese Annals of Mathematics, Series A, 23, 289-296.

[7] Christ, M., Duoandikoetxea, J. and Rubio de Francia, J.L. (1986) Maximal Operators Related to the Radon Transform and the Calderón-Zygmund Method of Rotations. Duke Mathematical Journal, 53, 189-209.

[8] Lu, S.Z. (1999) Multilinear Oscillatory Integrals with Calderón-Zygmund Kernel. Science in China A, 42, 1039-1046.
http://dx.doi.org/10.1007/BF02889505

[9] Ding, Y. and Lu, S.Z. (2001) Weighted Boundedness for a Class of Rough Multilinear Operators. Acta Mathematica Sinica, 17, 517-526.
http://dx.doi.org/10.1007/s101140100113

[10] 谵稳固. 多线性奇异积分的Besov估计[J]. 数学学报, 2002, 45(3): 417-424.

[11] 兰家诚, 梅春亮. 多线性分数次奇异积分在弱Hardy空间的Lipschitz估计. 纯粹数学与应用数学, 2007, 23(2): 189-193.

[12] Wu, H.L. and Lan, J.C. (2013) Lipschitz Estimates for Fractional Multilinear Singular Integral on Variable Exponent Lebesgue Spaces. Abstract and Applied Analysis, 1, 41-62.
http://dx.doi.org/10.1155/2013/632384

[13] 张普能, 李亮. 多线性分数次积分算子在Herz型hardy空间中的有界性[J]. 四川师范大学学报(自然科学版), 2013, 36(5): 721-725.

[14] Lu, S.Z. and Zhang, P. (2003) Lipschitz Estimates for Generalized Commutators of Fractional Integrals with Rough Kernel. Mathematische Nachrichten, 252, 70-85.

[15] Kováčik, O. and Rákosník, J. (1991) On spaces and . Czechoslovak Mathematical Journal, 1, 592-618.

[16] Lu, S.Z., Ding, Y. and Yan, D.Y. (2007) Singular Integrals and Related Topics. World Scientific, Singapore, 149-150.

[17] Wu, H.L. and Lan, J.C. (2012) The Boundedness of Rough Fractional Integral Operators on Variable Exponent Lebesgue Spaces. Analysis in Theory and Application, 28, 286-293.

[18] Ding, Y. and Lu, S.Z. (2000) Homogeneous Fractional Integrals on Hardy Spaces. Tohoku Mathematical Journal, 52, 153-162.

分享
Top