应用RKM和ADM分解方法解一类二阶积分微分方程
RKM and ADM Decomposition Method for Solving a Class of Two-Order Integral-Differential Equations

作者: 廉雪娇 * , 吕学琴 :哈尔滨师范大学,黑龙江 哈尔滨;

关键词: 二阶积分微分方程再生核方法ADM分解方法收敛性分析Two-Order Integral-Differential Equations Reproducing Kernel Method ADM Decomposition Method Convergence Analysis

摘要:
本文应用RKM和ADM分解方法求解一类二阶带有边值条件的积分微分方程,此方法避免了求解带有未知参数的非线性方程组,同时给出了收敛性分析,并且用算例加以证明方法的有效性。

Abstract: In this paper, we use RKM and ADM decomposition method to solve a class of second-order boundary value problems for integral-differential equations. This method avoids the series solution of the equation with unknown parameters. At the same time, the problem of convergence analysis is also given in this paper. Additionally, some numerical examples are presented to demonstrate the rationality of this algorithm.

文章引用: 廉雪娇 , 吕学琴 (2016) 应用RKM和ADM分解方法解一类二阶积分微分方程。 理论数学, 6, 65-71. doi: 10.12677/PM.2016.61010

参考文献

[1] Rach, R.C., Duan, J.S. and Wazwaz, A.M. (2014) Solving Cupled Lane-Emden Boundary Value Problems in Catalytic Diffusion by the Adomian Decomposition Method. Journal of Mathematical Chemistry, 52, 255-267.
http://dx.doi.org/10.1007/s10910-013-0260-6

[2] Lima, P.M. and Morgado, L. (2010) Numerical Modeling of Oxygen Diffusion in Cells with Michaelis-Menten Up-Take Kinetics. Journal of Mathematical Chemistry, 48, 145-158.
http://dx.doi.org/10.1007/s10910-009-9646-x

[3] Maleknejad, K., Khalisaraye, I.N. and Alizadeh, M. (2014) On the Solution of the Integro-Differential Equation with an Integral Boundary Condition. Numerical Algorithms, 65, 355-374.
http://dx.doi.org/10.1007/s11075-013-9709-8

[4] Yao, H. (2010) New Algorithm for the Numerical Solution of the Integro-Differential Equation with an Integral Boundary Condition. Numerical Algorithms, 47, 1054-1067.

[5] Cui, M. and Lin, Y. (2008) Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science Publisher, New York.

[6] Lv, X. and Shi, S. (2012) The Combined RKM and ADM for Solving Nonlinear Weakly Singular Volterra Integral-Differential Equations. Abstract and Applied Analysis, 2012, Article ID: 258067.

[7] Singh, R., Nelakanti, G. and Kumar, J. (2014) A New Efficient Technique for Solving Two-Point Boundary Value Problems for Integro-Differential Equations. Journal of Mathematical Chemistry, 52, 2030-2051.
http://dx.doi.org/10.1007/s10910-014-0363-8

分享
Top