具有可变系数的三维混沌系统的稳定性控制与电路实现
Stability Control and Circuit Implementation of a Novel 3D Chaotic System with Variable Coefficient

作者: 牛 弘 :天津科技大学电子信息与自动化学院,天津;

关键词: 具有可变系数的三维混沌系统混沌电路混沌控制3D Chaotic System with Variable Coefficient Chaotic Circuit Chaos Control

摘要:
本文基于改进型混沌电路模块化设计的方法,设计并搭建了具有可变系数的三维自治混沌系统的模拟电路实现,观察了实际电路产生的混沌运动曲线。而后,通过对该系统进行稳定性控制,使其不再产生混沌(或周期)运动而是全局渐近稳定于平衡点原点,且所设计的控制器对于该系统非线性部分系数的变化具有一定的鲁棒性。在此基础上,通过在实际电路中设计并加入相应的控制器电路,实现了实际电路由混沌运动状态迅速被稳定于平衡点原点的过程。

Abstract: In this paper, an analog circuit implementation of the three-dimensional autonomous chaotic sys-tem with variable coefficient is presented based on the modified module-based approach to chaotic circuit design. The chaotic phase portraits of the circuit are given to illustrate the good qualitative agreement between the numerical simulation and the experimental realization. Then, a linear feedback controller is designed via the Lyapunov stability theory so that the system is no longer chaotic or periodic but globally asymptotically converges to the equilibrium point at the origin. The designed controller is robust to the coefficient change of the nonlinear item. Moreover, after adding the controller circuit to the whole circuit implementation, the rapid change from chaos to convergence can be observed on the oscilloscope.

文章引用: 牛 弘 (2016) 具有可变系数的三维混沌系统的稳定性控制与电路实现。 动力系统与控制, 5, 31-40. doi: 10.12677/DSC.2016.51004

参考文献

[1] Lorenz, E.N. (1963) Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20, 130-141.
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

[2] 陈关荣, 吕金虎. Lorenz系统族的动力学分析、控制与同步[M]. 北京: 科学出版社, 2003.

[3] 王光义, 丘水生, 许志益. 一个新的三维二次混沌系统及其电路实现[J]. 物理学报, 2006, 55(7): 3295-3301.

[4] 刘凌, 苏燕辰, 刘崇新. 新三维混沌系统及其电路仿真实验[J]. 物理学报, 2007, 56(4): 1966-1970.

[5] 王梦蛟, 曾以成, 徐茂林. 一类自治混沌系统的动力学分析与电路实现[J]. 计算物理, 2010, 27(6): 927-932.

[6] 许喆, 刘崇新, 杨韬. 一种新型混沌系统的分析及电路实现[J]. 物理学报, 2010, 59(1): 131-139.

[7] 罗明伟, 罗小华, 李华青. 一类四维多翼混沌系统及其电路实现[J]. 物理学报, 2013, 62(2): 161-166.

[8] 张国山, 牛弘. 一个基于Chen系统的新混沌系统的分析与同步[J]. 物理学报, 2012, 61(11): 137-147.

[9] Yu, S.M., Lü, J.H. and Chen, G.R. (2007) A Module-Based and Unified Approach to Chaotic Circuit Design and Its Applications. International Journal of Bifurcation and Chaos, 17, 1785-1800.
http://dx.doi.org/10.1142/S0218127407018087

[10] 禹思敏. 混沌系统与混沌电路——原理、设计及其在通信中的应用[M]. 西安: 西安电子科技大学出版社, 2011.

[11] Ott, E., Grebogi, C. and Yorke, J. (1990) Controlling Chaos. Physical Review Letters, 64, 1196-1199.
http://dx.doi.org/10.1103/PhysRevLett.64.1196

[12] 刘秉正, 彭建华. 非线性动力学[M]. 北京: 高等教育出版社, 2004.

[13] Jiang, G.P. and Zheng, W.X. (2004) Chaos Control for a Class of Chaotic Systems Using PI-Type State Observer Approach. Chaos, Solitons & Fractals, 21, 93-99.
http://dx.doi.org/10.1016/j.chaos.2003.10.001

[14] Chen, X.R. and Liu, C.X. (2010) Passive Control on a Unified Chaotic System. Nonlinear Analysis: Real World Applications, 11, 683-687.
http://dx.doi.org/10.1016/j.nonrwa.2009.01.014

[15] 牛弘. 混沌及超混沌系统的分析、控制、同步与电路实现[D]: [博士学位论文]. 天津: 天津大学, 2014.

[16] 刘豹, 唐万生. 现代控制理论. 第3版. 北京: 机械工业出版社, 2006.

分享
Top