﻿ 梯度法求解黎曼流行上的多指标最优化

梯度法求解黎曼流行上的多指标最优化A Gradient Method to Solve Multicriteria Optimization on Riemannian Manifolds

In this paper, we present a new gradient method in the Riemannian context to solve multicriteria optimization. If the objective function is quasiconvex, the sequence generated by this method converges to a critical Pareto point. If the objective function is pseudo-convex, then the sequence will converge to optimal Pareto point.

[1] Cauchy, A. (1847) Méthodes générales pour la résolution des systèmes d’équations simultanees, C.R. Acad. Sci. Par., 25, 536-538.

[2] Raydan, M. and Svaiter, B.F. (2002) Relaxed Steepest Descent and Cauchy-Barzilai-Borwein Method. Computational Optimization and Applications, 21, 155-167.
http://dx.doi.org/10.1023/A:1013708715892

[3] Bento, G.C. and Melo, J.G. (2012) A Subgradient Method for Convex Feasibility on Riemannian Manifolds. Journal of Optimization Theory and Applications, 152, 773-785.
http://dx.doi.org/10.1007/s10957-011-9921-4

[4] Cruz Neto, J.X., de Lima, L.L. and Oliveira, P.R. (1998) Ge-odesic Algorithms in Riemannian Geometry. Balkan Journal of Geometry and Its Applications, 3, 89-100.

[5] Papa Quiroz, E.A., Quispe, E.M. and Roberto Oliveira, P. (2008) Steepest Descent Method with a Generalized Armijo Search for Quasiconvex Functions on Riemannian Manifolds. Journal of Mathematical Analysis and Applications, 341, 467-477.
http://dx.doi.org/10.1016/j.jmaa.2007.10.010

[6] Bento, G.C., Ferreira, O.P. and Oliveira, P.R. (2012) Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds. Journal of Optimi-zation Theory and Applications, 154, 88-107.
http://dx.doi.org/10.1007/s10957-011-9984-2

[7] Do Carmo, M.P. (1992) Remannian Geometry. Birkhauser, Boston.

[8] Sakai, T. (1996) Riemannian Geometry. Translations of Mathematical Monographs, Vol. 149. American Mathematical Society, Providence.

[9] Bento, G.C., Cruz Neto, J.X. and Soubeyran, A. (2014) A Proximal Point-Type Method for Multicriteria Optimization. Set-valued and Variational Analysis, 22, 557-573.

[10] Burachik, R., Graña Drummond, L.M., Iusem, A.N. and Svaiter, B.F. (1995) Full Convergence of the Steepest Descent Method with Inexact Line Searches. Optimization, 32, 137-146.
http://dx.doi.org/10.1080/02331939508844042

Top