一类模糊神经网络的多稳定
Multistability of a Class of Fuzzy Neural Networks

作者: 刘小云 :湖北师范学院,数学与统计学院,湖北 黄石;

关键词: 模糊神经网络多稳定平衡点局部指数稳定Fuzzy Neural Network Multistability Equilibrium Point Locally Exponentially Stable

摘要:
在这篇文章中,主要应用了压缩映射原理以及区间分割的方法,获得了一些保证n维模糊神经网络有不超过3n个平衡点的简洁条件,其中,有2n个局部指数稳定的平衡点。这些条件改进和拓展了现有的一些结果。此外,相关数值算例说明了本文理论结果的有效性。

Abstract: In this article, some sufficient conditions are obtained to guarantee that the n-dimensional fuzzy neural network can have not more than 3n equilibrium points by using the method of the com-pression mapping principle and interval segmentation. Moreover, there are 2n locally exponentially stable equilibrium points. These conditions can be developed from the improvement and extension of the existed ones. The validity of theoretical results is shown in one illustrative example.

文章引用: 刘小云 (2016) 一类模糊神经网络的多稳定。 动力系统与控制, 5, 1-10. doi: 10.12677/DSC.2016.51001

参考文献

[1] Yang, T., Yang, L., Wu, C. and Chua, L. (1996) Fuzzy Cellular Neural Networks: Theory. Proceeding of 1996 Fourth IEEE International Workshop on Cellular Neural Networks and Their Applications, 24-26 June 1996, 181-186.

[2] Yang, T., Yang, L., Wu, C. and Chua, L. (1996) Fuzzy Cellular Neural Networks: Applications. Pro-ceeding of 1996 Fourth IEEE International Workshop on Cellular Neural Networks and Their Applications, 24-26 June 1996, 225-230.
http://dx.doi.org/10.1109/cnna.1996.566560

[3] Yang, T. and Yang, L. (1996) The Global Stability of Fuzzy Cellular Neural Network. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 43, 880-883.
http://dx.doi.org/10.1109/81.538999

[4] Johansson, M., Rantzer, A. and Arzen, K. (1999) Piecewise Quadratic Stability of Fuzzy Systems. IEEE Transactions on Fuzzy Systems, 7, 713-722.
http://dx.doi.org/10.1109/91.811241

[5] Feng, G. (2004) Stability of Discrete-Time Fuzzy Dynamic Systems Based on Piecewise Lyapunov Functions. IEEE Transactions on Fuzzy Systems, 12, 22-28.
http://dx.doi.org/10.1109/TFUZZ.2003.819833

[6] Zhang, H.B. and Feng, G. (2008) Stability Analysis and Controller Design of Discrete-Time Fuzzy Large-Scale Systems Based on Piecewise Lyapunov Functions. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 38, 1390-1401.
http://dx.doi.org/10.1109/TSMCB.2008.927267

[7] Kim, E. and Kim, D. (2006) Stability Analysis and Synthesis for an Affine Fuzzy System via LMI and ILMI: Discrete Case. IEEE Transactions on Systems, Man, and Cybernet-ics-Part B: Cybernetics, 31, 132-140.

[8] 郭岗. 模糊系统的稳定性分析与控制器设计[D]: [博士学位论文]. 西安: 西安电子科技大学, 2010.

[9] Cao, J., Feng, G. and Wang, Y. (2008) Multistability and Multiperiodicity of Delayed Cohen-Grossberg Neural Networks with a General Class of Activation Functions. Physica D, 237, 1734-1749.
http://dx.doi.org/10.1016/j.physd.2008.01.012

[10] Zeng, Z., Huang, T. and Zheng, W.X. (2010) Multistability of Recurrent Neural Networks with Time-Varying Delays and the Piecewise Linear Activation Function. IEEE Transactions on Neural Networks, 21, 1371-1377.
http://dx.doi.org/10.1109/TNN.2010.2054106

[11] Cheng, C., Lin, K. and Shih, C. (2006) Multistability in Re-current Neural Networks. SIAM Journal on Applied Mathematics, 66, 1301-1320.
http://dx.doi.org/10.1137/050632440

[12] Zeng, Z., Huang, D. and Wang, Z. (2005) Memory Pattern Analysis of Cellular Neural Networks. Physics Letters A, 342, 114-128.
http://dx.doi.org/10.1016/j.physleta.2005.05.017

分享
Top