基于高度角加权的伪卫星定位线性化误差评估方法
A Linearization Error Evaluation Method of Pseudolite Positioning Based on Weighted Elevation Angle

作者: 霍翠萍 :中国科学院光电研究院,北京;中国科学院大学,北京; 李子申 , 袁洪 , 周凯 :中国科学院光电研究院,北京;

关键词: 伪卫星线性化误差最小二乘迭代法星座布局seudolite Linearization Error Iterative Least Squares The Constellation Layout

摘要: 与其他基于测距进行定位解算的导航系统(如GPS)一样,伪卫星定位系统观测模型在本质上是非线性的,对观测模型进行线性化对于大部分定位算法是一个必不可少的过程,而与GPS等卫星导航系统不同的是,伪卫星距离用户较近,其模型线性化时产生的误差不能被忽略,否则会导致定位解算可能无法正确收敛。针对此问题,本文精确地给出了线性化误差的边界值,并提出了判别线性化误差对定位精度影响的简化方法,根据此方法分析了不同伪卫星的星座布局对伪卫星系统线性化误差的影响。通过仿真对所提出的伪卫星的线性化误差评估的方法进行了验证。结果表明,当伪卫星系统满足判定条件时,迭代结果一定会收敛,而不满足时,则不一定收敛。

Abstract: Like the other navigation systems which are calculating positioning based on ranging, such as GPS, the observation model of pseudolite positioning system is essentially nonlinear. For most posi-tioning systems, linearization of the observation model is an essential process. Since the distances between the user and pseudolites are close compared with GPS and other satellite navigation sys-tems, the linearization error of the model cannot be ignored. Otherwise it may lead to incorrect convergence of the positioning solution. To solve this problem, this paper gives a precise boundary value of the linearization error. What’s more, it also gives a simplified method to judge the impact of the linearization on the positioning accuracy, based on which, impacts of different pseudolite constellation layouts on linearization error are analyzed. And then, it verifies the proposed assessment method of the linearization error of pseudolites by simulation. The results show that when the pseudolite systems satisfy the condition, results of the iteration will converge, otherwise, they are not necessarily converge.

文章引用: 霍翠萍 , 李子申 , 袁洪 , 周凯 (2016) 基于高度角加权的伪卫星定位线性化误差评估方法。 测绘科学技术, 4, 1-10. doi: 10.12677/GST.2016.41001

参考文献

[1] 籍利平. 基于北斗导航卫星的伪卫星技术在区域定位中的应用[J]. 测绘科学, 2002, 27(4): 53-56.

[2] 郑作亚, 韩晓冬, 黄铖. GPS基线向量的非线性解算及精度分析[J]. 测绘学报, 2004, 33(1): 27-32.

[3] 万晓光. 伪卫星组网定位技术研究[D]: [博士学位论文]. 上海: 上海交通大学, 2007.

[4] Teunissen, P.J.G. (1987) Nonlinear Inver-sion of Geodetic and Geophysical Data: Diagnosing Nonlinearity. In: Brunner, F.K. and Rizos, C., Eds., Developments in Four-Dimensional Geodesy, Springer Verlag, Berlin, 241-264.

[5] 王新洲. 非线性模型参数估计理论与应用[M]. 武汉: 武汉大学出版社, 2002: 51-75.

[6] 孟键. 伪卫星定位技术与组网配置研究[D]: [硕士学位论文]. 河南: 中国人民解放军信息工程大学, 2007.

[7] Wang, J.L., Tsujii, T., Rizos, C., Dai, L.W. and Moore, M. (2000) Integrating GPS and Pseudolite Signals for Position and Attitude Determination: Theoretical Analysis and Experiment Results. Proceedings of the 13th International Technical Meeting of the Satellite Division of the U.S. Institute of Navi-gation, Salt Lake City, 19-22 September 2000, 2252-2262.

[8] 高为广, 潘娜娜, 张晓东. 改进的迭代EKF算法在伪卫星定位中的应用[J]. 测绘科学, 2008, 33(4): 73-75.

[9] 谢钢. GPS原理与接收机应用[M]. 北京: 电子工业出版社, 2009.

[10] 刘基余. GPS卫星导航定位原理与方法[M]. 北京: 科学出版社, 2008: 228-236.

[11] 王福丽, 王潜心, 成英燕, 韦铖. GPS/GLONASS卫星导航系统组合定位的定权方法研究[J]. 测绘科学, 2013, 38(1): 18-32.

[12] 呼玮, 杨建军, 田璐. 临近空间伪卫星定位精度仿真分析[J]. 无线电工程, 2009, 39(9): 25-27.

[13] 高社生, 赵飞, 谢梅林. 临近空间伪卫星独立组网几何布局研究[J]. 导航定位学报, 2013, 1(4): 21-25.

[14] 杨一, 高社生, 阎海峰. 临近空间伪卫星几何布局方案设计[J]. 系统工程与电子技术, 2014, 36(3): 532-538.

分享
Top