﻿ 基于双边核估计的保持跳跃曲线回归过程

# 基于双边核估计的保持跳跃曲线回归过程A Jump-Preserving Curve Regression Procedure Based on Bilateral Kernel Estimation

Abstract: It is well known that curve regression is very important in many applications. However, since data collection procedures are disturbed by errors, traditional curve regression methods cannot play well in jump points. This paper proposes a jump-preserving curve fitting procedure, which is based on bilateral kernel estimation. Kernel functions are not only added to x-axis, but also added to y-axis. Then, we estimate given points from left side, right side and whole neighborhood. Weighted residual sums of squares are calculated to compare. The estimate with smaller weighted residual sums of squares is selected as the final estimate of the given point, so that we can achieve jump- preserving while not to detect jump points at first. Numerical simulation and real data analysis demonstrate the feasibility and efficiency of this method.

[1] Müller, H.-G. (1992) Change-Points in Nonparametric Regression Analysis. The Annuals of Statistics, 20, 737-761.
http://dx.doi.org/10.1214/aos/1176348654

[2] Qiu, P., Cho, A. and Li, X. (1991) Estimation of Jump Regression Functions. Bulletin of Information and Cybernetics, 24, 197-212.

[3] Wu, J.S. and Chu, C.K. (1993) Kernel Type Es-timators of Jump Points and Values of a Regression Function. The Annals of Statistics, 21, 1545-1566.
http://dx.doi.org/10.1214/aos/1176349271

[4] Loader, C.R. (1996) Change Point Estimation Using Nonparametric Regression. The Annals of Statistics, 24, 1667- 1678.
http://dx.doi.org/10.1214/aos/1032298290

[5] Qiu, P. and Yandell, B.(1998) A Local Polynomial Jump Detection Algorithm in Nonparametric Regression. Technometrics, 40, 141-152.

[6] Wang, Y. (1995) Jump and Sharp Cusp Detection by Wavelets. Biometrika, 82, 385-397.
http://dx.doi.org/10.1093/biomet/82.2.385

[7] Eubank, R.L. and Speckman, P.L. (1994) Nonparametric Estimation of Functions with Jump Discontinuities. In: Carlstein, E., Müller, H.G. and Siegmund, D., Eds., IMS Lecture Notes, Vol. 23, Change-Point Problems, 130-144.
http://dx.doi.org/10.1214/lnms/1215463119

[8] Koo, J.Y. (1997) Spline Estimation of Discontinuous Regression Functions. Journal of Computational and Graphical Statistics, 6, 266-284.

[9] Shiau, J.H., Wahba, G. and Johnson, D.R. (1986) Partial Spline Models for the Inclusion of Tropopause and Frontal Boundary Information in Otherwise Smooth Two- and Three-Dimensional Objective Analysis. Journal of Atmospheric and Oceanic Technology, 3, 714-725.
http://dx.doi.org/10.1175/1520-0426(1986)003<0714:PSMFTI>2.0.CO;2

[10] McDonald, J.A. and Owen, A.B. (1986) Smoothing with Split Linear Fits. Technometrics, 28, 195-208.
http://dx.doi.org/10.1080/00401706.1986.10488127

[11] Qiu, P. (2003) A Jump-Preserving Curve Fitting Proce-dure Based on Local Piecewise-Linear Kernel Estimation. Jour- nal of Nonparametric Statistics, 15, 437-453.
http://dx.doi.org/10.1080/10485250310001595083

[12] Fan, J. and Gijbels, I. (1996) Local Polynomial Modeling and Its Applications. Chapman & Hall, London, 66.

[13] Wikipedia, Kernel (Statistics). https://en.wikipedia.org/wiki/Kernel_(statistics)

[14] Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman & Hall, London, 39, 296-297.
http://dx.doi.org/10.1007/978-1-4899-3324-9

[15] Nadaraya, E.A. (1964) On Estimating Regression. Theory of Probability & Its Applications, 9, 141-142.
http://dx.doi.org/10.1137/1109020

[16] Qiu, P. (1994) Estimation of the Number of Jumps of the Jump Regression Functions. Communications in Statistics-Theory and Methods, 23, 2141-2155.
http://dx.doi.org/10.1080/03610929408831378

[17] Finance.yahoo.com. CEA Weekly-Adjusted Close Price. http://finance.yahoo.com/q/hp?s=CEA+Historical+Prices

[18] Loader, C.R. (1999) Bandwidth Selection: Classical or Plug-In? Annals of Statistics, 27, 415-438.
http://dx.doi.org/10.1214/aos/1018031201

Top