基于Legendre伪谱法的空间机器人姿态运动的最优控制
Attitude Optimal Control of Space Robot Based on the Legendre Pseudospectral Method

作者: 陈凯捷 :北京信息科技大学机电工程学院,北京; 戈新生 :北京信息科技大学理学院,北京;

关键词: 空间机器人Legendre伪谱法非完整运动规划最优控制Space Robot Legendre Pseudospectral Method Nonholonomic Motion Planning Optimal Control

摘要:
采用Legendre伪谱法研究自由漂浮双臂空间机器人姿态运动最优控制问题。首先,根据系统动量矩守恒关系,对自由漂浮并带有双臂的平面型空间机器人建立动力学模型,并以系统关节的耗散能为性能指标,给出其最优控制问题描述。然后,利用Legendre伪谱法以多项式参数化近似状态变量与控制变量,微分方程用正交多项式近似,从而将连续最优控制问题转化为一组非线性规划问题求解。为解决空间机器人姿态规划问题提供了一种有效方法。最后,对自由漂浮双臂空间机器人姿态控制进行数值仿真,仿真结果表明Legendre伪谱法对解决该姿态运动最优控制问题的有效性。

Abstract: The optimal attitude control of free-floating space robot system with dual-arm is discussed in this paper by using Legendre pseudospectral method. The simplified robot system dynamics model is established based on the linear and angular momentum conservation of the system. And the system constraints and performance index function based on system joints dissipation energy are determined to describe the optimal control problem. Then the continuous trajectory optimization is transformed into a discrete nonlinear programming problem (NLP) by using Legendre pseudospectral method. And the energy-optimal solutions are obtained with a NLP solver. An optimal attitude control method for the space robot is obtained. At the end of this paper, numerical simulations on the free-floating space robot attitude control problems are given. And the results verify the effectiveness of Legendre pseudospectral method on solving the optimal attitude control problem.

文章引用: 陈凯捷 , 戈新生 (2015) 基于Legendre伪谱法的空间机器人姿态运动的最优控制。 国际航空航天科学, 3, 77-83. doi: 10.12677/JAST.2015.34010

参考文献

[1] Tang, X.T. (2010) Backstepping Based Robust ANN Tracking in Inertial Space for Space Robot System with Dual- Arms. Journal of Minjiang University, 41, 35-40.

[2] 戈新生, 张奇志, 刘延柱. 基于遗传算法的空间机械臂运动规划的最优控制[J]. 空间科学学报, 2000, 20(2): 185- 191.

[3] Fernandes, C., Gurvits, L. and Li, Z.X. (1994) Attitude Control of a Space Platform/Manipulator System Using Internal Motion. International Journal of Robotics Research, 13, 289-304.
http://dx.doi.org/10.1177/027836499401300401

[4] Nakamura, Y. and Mukherjee, R. (1991) Nonholonomic Path Planning of Space Robots via a Bidirectional Approach. IEEE Transactions on Robotics & Automation, 7, 500-514.
http://dx.doi.org/10.1109/70.86080

[5] Ge, X.S. and Chen, L.Q. (2003) Motion Planning of a Nonholonomic Multibody System Using Genetic Algorithm. ASME 2003 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 997-1002.

[6] Benson, D. (2005) A Gauss Pseudospectral Transcription for Optimal Control. Massachusetts Institute of Technology.

[7] Ross, I.M. and Karpenko, M. (2012) A Review of Pseudospectral Optimal Control: From Theory to Flight. Annual Reviews in Control, 36, 182-197.
http://dx.doi.org/10.1016/j.arcontrol.2012.09.002

[8] Elnagar, G., Kazemi, M.A. and Razzaghi, M. (1995) The Pseudospectral Legendre Method for Discretizing Optimal Control Problems. IEEE Transactions on Automatic Control, 40, 1793-1796.
http://dx.doi.org/10.1109/9.467672

[9] Gong, Q., Ross, I.M., Kang, W., and Fahroo, F. (2008) Connections between the Covector Mapping Theorem and Convergence of Pseudospectral Methods for Optimal Control. Computational Optimization & Applications, 41, 307-335.
http://dx.doi.org/10.1007/s10589-007-9102-4

[10] Gill, P.E., Murray, W. and Saunders, M.A. (2002) User’s Guide for SNOPT Version 7: Software for Large-Scale Nonlinear Programming. 2008, http://ccom.ucsd.edu/~peg/

分享
Top