代谢组学在植物研究领域中的应用
Application of Metabolomics in Plant Research

作者: 腊贵晓 , 郝西 , 理向阳 , 杨铁钢 :河南省农业科学院经济作物研究所,河南 郑州; 欧明毅 :贵州中烟工业有限责任公司,贵州 贵阳;

关键词: 代谢组学植物进展展望Metabolomics Plant Advance Prospect

摘要: 代谢组学是继基因组学、蛋白组学之后一门新兴的组学技术,可对某一生物或细胞内所有低分子量代谢产物进行定性和定量分析。植物代谢组学已经成为代谢组学中一个重要分支。近几年随着气相色谱-质谱联用仪(Gas Chromatography-Mass Spectrometer, GC-MS)、液相色谱–质谱联用仪(Liquid Chromatography-Mass Spectrometer, LC-MS)、毛细管电泳–质谱联用仪(Capillary Electrophore-sis-Mass Spectrometry, CE-MS)等技术的发展及数据分析方法的完善,植物代谢组学被广泛应用到基因功能解析、代谢途径及代谢调控机理、作物产量及品质改善等研究领域,并展现出巨大的技术潜力。为此,本文综述了代谢组学在植物领域研究中的应用进展,指出其存在的问题,并对其应用前景进行了展望。

Abstract: Metabolomics is an emerging omics technology after genomics and proteomics, which can qualify and quantify all small molecular weight metabolites in an organism or cells in a short time. With the technology development of gas chromatography-mass spectrometer (GC-MS), liquid chroma-tography-mass spectrometer (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS), and the improvement of data process method and presented huge advantages, plant metabolomics has been used in multiple research fields such as functional genomics, metabolism pathway, crop improvement... In this paper, we reviewed the recent progress in plant metabolomics and the put-ative problem in this research field. Moreover, the application prospects of the plant metabolomics were also forecasted.

文章引用: 腊贵晓 , 郝西 , 理向阳 , 欧明毅 , 杨铁钢 (2016) 代谢组学在植物研究领域中的应用。 植物学研究, 5, 26-33. doi: 10.12677/BR.2016.51005

参考文献

[1] Hirai, M.Y., Sugiyama, K., Sawada, Y., et al. (2007) Omics-Based Identification of Arabidopsis Myb Transcription Factors Regulating Aliphatic Glucosinolate Biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 104, 6478-6483.
http://dx.doi.org/10.1073/pnas.0611629104

[2] Sawada, Y., Toyooka, K., Kuwahara, A., et al. (2009) Arabi-dopsis Bile Acid: Sodium Symporter Family Protein 5 Is Involved in Methionine-Derived Glucosinolate Biosynthesis. Plant & Cell Physiology, 50, 1579-1586.
http://dx.doi.org/10.1093/pcp/pcp110

[3] Croteau, R., Davis, E., Ringer, K., et al. (2005) (-)-Menthol Biosyn-thesis and Molecular Genetics. Naturwissenschaften, 92, 562-577.
http://dx.doi.org/10.1007/s00114-005-0055-0

[4] Rios-Estepa, R. and Lange, B.M. (2007) Experimental and Mathematical Approaches to Modeling Plant Metabolic Networks. Phytochemistry, 68, 2351-2374.
http://dx.doi.org/10.1016/j.phytochem.2007.04.021

[5] Tiessen, A., Hendriks, J.H.M., Stitt, M., et al. (2002) Starch Synthesis in Potato Tubers Is Regulated by Post-Translational Redox Modification of ADP-Glucose Pyrophos-phorylase: A Novel Regulatory Mechanism Linking Starch Synthesis to the Sucrose Supply. Plant Cell, 14, 2191-2213.
http://dx.doi.org/10.1105/tpc.003640

[6] 漆小泉, 王玉兰, 陈晓亚. 植物代谢组学——方法与应用[M]. 北京: 化学工业出版社, 2011.

[7] 滕中秋, 付卉青, 贾少华, 等. 植物应答非生物胁迫的代谢组学研究进展[J]. 植物生态学报, 2011, 35(1): 110-118.

[8] 赵秀琴, 张婷, 王文生. 水稻低温胁迫不同时间的代谢物谱图分析[J]. 作物学报, 2013, 39(4): 720-726.

[9] Hirai, M.Y., Yano, M., Goodenowe, D.B., et al. (2004) Integration of Transcriptomics and Metabolomics for Understanding of Global Responses to Nutritional Stresses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 101, 10205-10210.
http://dx.doi.org/10.1073/pnas.0403218101

[10] Hirai, M.Y. and Saito, K. (2004) Post Genomics Approaches for the Elucidation of Plant Adaptive Mechanisms to Sulphur Deficiency. Journal of Experimental Botany, 55, 1871-1879.
http://dx.doi.org/10.1093/jxb/erh184

[11] Allwood, J.W., Ellis, D.I., Heald, J.K., et al. (2006) Metabolomic Ap-proaches Reveal That Phosphatidic and Phosphatidyl Glycerol Phospholipids Are Major Discriminatory Non-Polar Metabolites in Responses by Brachypodium distachyon to Challenge by Magnaporthe grisea. Plant Journal, 46, 351-368.
http://dx.doi.org/10.1111/j.1365-313X.2006.02692.x

[12] Parker, D., Beckmann, M., Zubair, H., et al. (2009) Metabolomic Analysis Reveals a Common Pattern of Metabolic Re-Programming during Invasion of Three Host Plant Species by Magnaporthe grisea. Plant Journal, 59, 723-737.
http://dx.doi.org/10.1111/j.1365-313X.2009.03912.x

[13] Joost, J.B.K., Fu, J.Y., Ricde Vos, C.H., et al. (2006) The Genetics of Plant Metabolism. Nature Genetics, 38, 842-849.

[14] 张凤霞, 王国栋. 植物代谢组学应用研究——现状与展望[J]. 中国农业科技导报, 2013, 15(2): 28-32.

[15] Hamzehzarghani, H., Kushalappa, A.C., Dion, Y., et al. (2005) Metabolic Profiling and Factor Analysis to Discriminate Quantitative Resistance in Wheat Cultivars against Fusarium Head Blight. Physiological and Molecular Plant Pathology, 66, 119-133.
http://dx.doi.org/10.1016/j.pmpp.2005.05.005

[16] Carreno-Quintero, N., Czedik-Eysenberg, A., Grieder, C., et al. (2012) Untargeted Metabolic Quantitative Trait Loci Analyses Reveal a Relationship between Primary Metabolism and Potato Tuber Quality. Plant Physiology, 158, 1306- 1318.
http://dx.doi.org/10.1104/pp.111.188441

[17] Kushalappa, A.C., Vikram, A. and Raghavan, G.S.V. (2008) Me-tabolomics of Headspace Gas for Diagnosing Diseases of Fruits and Vegetables after Harvest. Stewart Postharvest Re-view, 4, 1-7.
http://dx.doi.org/10.2212/spr.2008.2.10

[18] Aharoni, A., Ricde Vos, C.H., Verhoeven, H.A., et al. (2002) Nontargeted Metabolome Analysis by Use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics: A Journal of Integrative Biology, 6, 217-234.
http://dx.doi.org/10.1089/15362310260256882

[19] Nicholson, J.K., Lindon, J.C. and Holmes, E. (1999) Metabonomics: Understanding the Metabolic Responses of Living Systems to Pathophysiological Stimuli via Multivariate Statistical Analysis of Biological NMR Spectroscopic Data. Xenobiotica, 11, 1181-1189.
http://dx.doi.org/10.1080/004982599238047

[20] Goodacre, R., Vaidyanathan, S., Dunn, W.B., Harrigan, G.G. and Kell, D.B. (2004) Metabolomics by Numbers: Acquiring and Understanding Global Metabolite Data. Trends in Biotechnology, 5, 245-252.
http://dx.doi.org/10.1016/j.tibtech.2004.03.007

[21] Sun, B., Liu, N., Zhao, Y., et al. (2011) Variation of Gluco-sinolates in Three Edible Parts of Chinese Kale (Brassica alboglabra Bailey) Varieties. Food Chemistry, 124, 941-947.
http://dx.doi.org/10.1016/j.foodchem.2010.07.031

[22] 刘贤青, 罗杰. 植物代谢组学技术研究进展[J]. 科技导报, 2015, 33(16): 33-38.

[23] 赵丹, 杜仁鹏, 刘鹏飞, 等. 代谢组学技术在植物源性食品研究中的应用[J]. 食品科学, 2015, 36(3): 212-216.

[24] Trethewey, R.N., Krotzky, A.J. and Willmitzer, L. (1999) Metabolic Profiling: A Rosetta Stone for Genomics. Current Opinion in Plant Biology, 2, 83-85.
http://dx.doi.org/10.1016/S1369-5266(99)80017-X

[25] Cevallos-Cevallosa, J.M., Reyes-De-Corcueraa, J.I., et al. (2009) Metabolomic Analysis in Food Science: A Review. Trends in Food Science and Technology, 20, 557-566.
http://dx.doi.org/10.1016/j.tifs.2009.07.002

[26] Dixon, R.A. and Strack, D. (2003) Phytochemistry Meets Genome Analysis, and Beyond. Phytochemistry, 6, 815-816.
http://dx.doi.org/10.1016/S0031-9422(02)00712-4

[27] Kin, H.K., Choi, Y.H., Erkelens, C., et al. (2005) Metabolic Fingerprinting of Ephedra Species Using 1H NMR Spectroscopy and Principal Component Analysis. Chemical and Pharmaceutical Bulletin, 53, 105-109.

[28] 冯吉, 余君, 蔡长春. 代谢组学在烟草香味物质研究中的应用概况与展望[J]. 湖北农业科学, 2012, 51(23): 5248- 5252.

[29] 淡墨, 高先富, 谢国祥. 代谢组学在植物代谢研究中的应用[J]. 中国中药杂志, 2007, 32(22): 2337-2341.

[30] 刘彩云, 刘洪祥, 常志隆, 等. 烟草香气品质研究进展[J]. 中国烟草科学, 2010, 31(6): 75-78.

[31] 席元肖, 宋纪真, 李锋, 等. 不同香型烤烟香气前体物及香味成分含量的差异分析[J]. 浙江农业科学, 2011(2): 355-361.

[32] Bino, R.J., Hall, R.D., Fiehn, O., et al. (2004) Potential of Metabolomics as a Functional Genomics Tool. Trends in Plant Sciences, 9, 418-425.
http://dx.doi.org/10.1016/j.tplants.2004.07.004

[33] Carrarif, B.C., Usadel, B., et al. (2006) Integrated Analysis of Metabolite and Transcript Levels Reveals the Metabolic Shifts That Underlie Tomato Fruit Development and Highlight Regulatory Aspects of Metabolic Network Behavior. Plant Physiology, 142, 1380-1396.
http://dx.doi.org/10.1104/pp.106.088534

[34] VonRoepenack, L.E., Degenkolb, T., Zerjeski, M., et al. (2004) Profiling of Arabidopsis Secondary Metabolites by Capillary Liquchromatography Coupled to Electrospray Ion Ization Quadrupole Time of Flight Mass Spectrometry. Plant Physiology, 134, 548-559.
http://dx.doi.org/10.1104/pp.103.032714

[35] Dixon, R.A. and Strack, D. (2003) Phytochemistry Meets Genome Analysis, and Beyond. Phytochemistry, 6, 815-816.
http://dx.doi.org/10.1016/S0031-9422(02)00712-4

[36] 尹恒, 李曙光, 白雪芳, 等. 植物代谢组学的研究方法及其应用[J]. 植物学通报, 2005, 22(5): 532-540.

[37] 邱德有, 黄璐琦. 代谢组学研究-功能基因组学研究的重要组成部分[J]. 分子植物育种, 2004, 2(2): 165-177.

[38] 王莉, 张艳霞, 史玲玲, 等. 功能基因组学和代谢组学技术在植物次生代谢物合成及调控研究中的应用[J]. 北京林业大学学报, 2007, 9(5): 153-159.

[39] Raamsdonk, L.M., Tuesink, B., Broadhurst, D., et al. (2001) A Functional Genomics Strategy That Uses Metabolome Data to Reveal the Phenotype of Silent Mutations. Nature Biotechnology, 19, 45-50.

[40] Fiehn, O., Kopka, J., Dormann, P., et al. (2000) Metabolite Profiling for Plant Functional Genomics. Nature Biotechnology, 18, 1157-1161.
http://dx.doi.org/10.1038/81137

[41] Lytovchenko, A., Bieberich, K., Willmitzer, L., et al. (2001) Carbon Assi-milation and Metabolism in Potato Leaves Deficient in Plastidial Phosphoglucomutase. Planta, 215, 802-811.
http://dx.doi.org/10.1007/s00425-002-0810-9

[42] Winzer, T., Gazda, V., He, Z., et al. (2012) A Papaver somni-ferum 10-Gene Cluster for Synthesis of the Anticancer Alkaloid Noscapine. Science, 336, 1704-1708.

[43] Geu-Flores, F., Sherden, N.H., Courdavault, V., et al. (2012) An Alternative Route to Cyclic Terpenes by Reductive Cyclization in Iridoid Biosynthesis. Nature, 492, 138-142.
http://dx.doi.org/10.1038/nature11692

[44] 杨军, 宋硕林. 代谢组学及其应用[J]. 生物工程学报, 2005, 21(1): 1-5.

[45] 许国旺. 代谢组学方法与应用[M]. 北京: 科学出版社, 2008.

[46] Hirai, M.Y., Klein, M., Fujikawa, Y., et al. (2005) Elucidation of Gene-to-Gene and Metabolite-to-Gene Networks in Arabidopsis by Integration of Metabolomics and Transcriptomics. Journal of Biological Chemistry, 280, 25590-25595.
http://dx.doi.org/10.1074/jbc.M502332200

分享
Top