自动微分工具辅助下的伴随模式实现及应用试验
Implementation of Adjoint Model with Automatic Differentiation Tool and Application Experiment

作者: 刘喜迎 , 姚姗姗 , 刘春艳 :解放军理工大学气象海洋学院,江苏 南京;

关键词: 开源软件自动微分伴随模式敏感性分析Open Source Software Automatic Differentiation Adjoint Model Sensitivity Analysis

摘要:
为避免手工方法编写数值模式伴随模式程序的困难并探索利用开源自动微分工具OpenAD/F辅助大气科学领域伴随模式实现方法,本文从正压原始方程模式出发研究了在OpenAD/F辅助下获得其伴随模式的方法,并利用获得的伴随模式分析了登陆台风强度对初值和地形的敏感性。所得结论与采用一种商用自动微分工具得到的伴随模式分析结果一致,这表明此次伴随模式实现工作是成功的,此工作为利用OpenAD/F软件实现更复杂数值模式的伴随模式打下了基础。

Abstract: To avoid the difficulties of code hand writing of adjoint model of numerical model and explore the methods of implementing adjoint model in atmospheric science with the help of open source automatic differentiation tool OpenAD/F, the OpenAD/F had been used to help getting the adjoint model of the barotropic primitive equation model, which is widely used in theoretical analysis in atmospheric research. The adjoint model was then used to study the sensitivity of simulated landing typhoon strength to initial value and terrain. The study results are consistent with that from another adjoint model implemented with help of a commercial automatic differentiation tool. This shows that the implementation of the adjoint model in the work is successful and the work has laid foundation for later development of more complicated adjoint models with OpenAD/F.

文章引用: 刘喜迎 , 姚姗姗 , 刘春艳 (2015) 自动微分工具辅助下的伴随模式实现及应用试验。 软件工程与应用, 4, 154-159. doi: 10.12677/SEA.2015.46020

参考文献

[1] Griewank, A. and Walther, A. (2008) Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. 2nd Edition, SIAM, Philadelphia, 31-37.
http://dx.doi.org/10.1137/1.9780898717761

[2] Bischof, C., Khademi, P., Mauer, A. and Carle, A. (1996) ADIFOR 2.0: Automatic Differentiation of Fortran 77 Programs. IEEE Computational Science & Engineering, 3, 18-32.
http://dx.doi.org/10.1109/99.537089

[3] Hascoët, L. and Pascual, V. (2004) TAPENADE 2.1 User’s Guide, Rapport technique 300. INRIA, France.

[4] Giering, R., Kaminski, T. and Slawig, T. (2005) Generating Efficient Derivative Code with TAF: Adjoint and Tangent Linear Euler Flow around an Airfoil. Future Generation Computer Systems, 21, 1345-1355.
http://dx.doi.org/10.1016/j.future.2004.11.003

[5] Utke, J., Naumann, U., Fagan, M., Tallent, N., Strout, M., Heimbach, P., Hill, C. and Wunsch, C. (2008) OpenAD/F: A Modular, Open-Source Tool for Automatic Differentiation of Fortran Codes. ACM Transactions on Mathematical Software, 34, 18:1-18:36.
http://dx.doi.org/10.1145/1377596.1377598

[6] Errico, R.M. (1997) What Is an Adjoint Model? Bulletin of the American Meteorological Society, 78, 2577-2591.
http://dx.doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2

[7] Courtier, P. and Talagrand, O. (1987) Variational Assimilation of Meteorological Observations with the Adjoint vorticity Equation, II, Numerical Results. Quarterly Journal of the Royal Meteorological Society, 113, 1329-1347.
http://dx.doi.org/10.1002/qj.49711347813

[8] Navon, I.M., Zou, X., Derber, J. and Sela, J. (1992) Variational Data Assimilation with an Adiabatic Version of the NMC Spectral Model. Monthly Weather Review, 120, 1433-1446.
http://dx.doi.org/10.1175/1520-0493(1992)120<1433:VDAWAA>2.0.CO;2

[9] Charpentier, I. and Ghemires, M. (2000) Efficient Adjoint Derivatives: Application to the Meteorological Model Meso- NH. Optim. Methods Software, 13, 35-63.
http://dx.doi.org/10.1080/10556780008805773

[10] Le Dimet, F.X., Navon, I.M. and Daescu, D.N. (2002) Second Order Information in Data Assimilation. Monthly Weather Review, 130, 629-648.
http://dx.doi.org/10.1175/1520-0493(2002)130<0629:SOIIDA>2.0.CO;2

[11] Giles, M.B. and Pierce, N.A. (2000) An Introduction to the Adjoint Approach to Design. Flow, Turbulence and Control, 65, 393-415.
http://dx.doi.org/10.1023/A:1011430410075

[12] Alexe, M., Roderick, O., Anitescu, M., Utke, J., Fanning, T. and Hovland, P. (2010) Using Automatic Differentiation in Sensitivity Analysis of Nuclear Simulation Models. Transactions of the American Nuclear Society, 102, 235-237.

[13] Homescu, C. and Navon, I.M. (2003) Numerical and Theoretical Considerations for Sensitivity Calculation of Discontinuous Flow. Systems and Control Letters on Optimization and Control of Distributed Systems, 48, 253-260.
http://dx.doi.org/10.1016/S0167-6911(02)00270-0

[14] 刘喜迎. 区域谱元正压大气模式台风移动数值模拟试验[J]. 计算物理, 2011, 28(1): 35-40.

[15] Liu, X. (2014) Sensitivity Analysis of Typhoon Intensity to Initial Value and Terrain with Adjoint Model. Scientific Journal of Earth Science, 4, 130-134.

分享
Top