两端固支叠合梁的有限元分析
Finite Element Analysis of a Two-End Fixed Laminated Beam

作者: 郭法俊 , 潘冬冬 , 求美佳 , 赵熠昕 , 梅甫良 :嘉兴学院建筑工程学院,浙江 嘉兴;

关键词: 叠合梁固支端有限元分析应力位移Laminated Beam Clamped End Finite Element Analysis Stress Displacement

摘要:
本文采用ANSYS10.0对两端固支叠合梁在集中力作用下的应力和位移进行了有限元分析,探讨了不同(纵向和横向)截面上应力与位移分布规律。结果表明:固支边与其它横截面上弯曲正应力分布规律是不同的,固支边上弯曲正应力按强非线性变化,而它在其它横截面绝大数区域上按线性变化的同时而在其它横截面界面附近较小区域上它按弱非线性变化;固支边与其它横截面上中性轴都只有一个且均位于材料刚度相对较大的同一位置。

Abstract: The finite element analysis of stress and displacement components for a two-end clamped lami-nated beam subjected to a pair of concentrated forces is carried out by means of ANSYS10.0. The distributions of stress and displacement components on different (longitudinal and transverse) cross-sections are discussed. Results show that the distribution of bending normal stress on two clamped sides is different from one on other transverse cross-sections. The bending normal stress varies on the fixed sides in a robustly nonlinear fashion. It changes within most range of other transverse cross sections in a linear way while it varies in the vicinity of interface between two materials in a slowly nonlinear way. There is only one neutral axis on the fixed sides and the other transverse cross sections, which resides in the same location inside the material with bigger stiffness.

文章引用: 郭法俊 , 潘冬冬 , 求美佳 , 赵熠昕 , 梅甫良 (2015) 两端固支叠合梁的有限元分析。 力学研究, 4, 96-101. doi: 10.12677/IJM.2015.44012

参考文献

[1] 孙振东, 于叔名, 常录喜. 叠梁弯曲的试验分析[J]. 大连铁道学院学报, 1991, 12(4): 47-49.

[2] 吴晓, 孙晋, 杨立军. 叠层梁弯曲实验的应力计算公式[J]. 南湖文理学院学报, 2009, 21(1): 27-28.

[3] 徐慧, 杨铮. 钢铝双层组合梁的应力分析与实验[J]. 华南地震, 2014, 34(1): 04-11.

[4] 史丽娟, 董秀丽, 杨雁宾. 叠层梁在集中荷载作用下的精确解[J]. 黑龙江商学院学报, 1990(3): 34-37.

[5] 纪多辙, 王有凯. 用状态空间法求解简支叠合梁在任意横向载荷作用下的精确解[J]. 力学与实践, 1998, 20(1): 51-52.

[6] 高荣誉, 范家让. 叠层深梁的精确解[J]. 合肥工业大学学报(自然科学版), 2009, 32(5): 738-741.

分享
Top