基于多模式光机械系统的相干完美吸收与透射
Coherent Perfect Absorption and Transmission Based on a Multi-Mode Optomechanical System

作者: 陈华俊 * , 方贤文 , 唐旭东 , 缪广红 :安徽理工大学理学院,安徽 淮南;

关键词: 腔光机械相干完美吸收相干完美透射Cavity Optomechanics Coherent Perfect Absorption Coherent Perfect Transmission

摘要:
本文提出一种广义的多模式腔光机械系统,其中两光学腔由一束较强的控制场和一束较弱的信号场驱动与同一个机械振子耦合。较弱的信号场将会被该系统完全吸收而不产生任何能量输出,定义该现象为相干完美吸收,并且当相干完美吸收产生时输入信号场的能量将由两个腔场和机械模所分担。改变参数条件,较弱的输入信号场将由一个腔传递到另一个腔而不产生任何的能量损耗,定义该现象为相干完美透射。上述两种现象可由两腔场之间的耦合所操控,并进一步分析了该现象产生的起源和条件。上述两种现象将在全光学领域中的量子信息方面有着潜在的应用。

Abstract: We present a generalized multi-mode cavity optomechanical system, where two cavity modes with strong control fields and weak signal fields are coupled to a common mechanical resonator. The weak input signal fields will be entirely absorbed by the system without generating any energy output from each of the cavity modes termed coherent perfect absorption (CPA), and the two cavity modes and mechanical mode will share the input probe fields energy when CPA occurs under parameter regimes. With changing the parameter conditions, a weak input signal field will transmit from one cavity to the other cavity without undergoing any energy loss termed coherent perfect transmission (CPT). The above phenomena are dependent on the coupling strength between the two cavity modes in this optomechanical system. The origin and conditions that enable these phenomena to achieve are analyzed, and potential applications in quantum information may be realized in all-optical domain based on such phenomena.

文章引用: 陈华俊 , 方贤文 , 唐旭东 , 缪广红 (2015) 基于多模式光机械系统的相干完美吸收与透射。 应用物理, 5, 172-180. doi: 10.12677/APP.2015.512024

参考文献

[1] Aspelmeyer, M., Kippenberg, T.J. and Marquardt, F. (2014) Cavity Optomechanics. Reviews of Modern Physics, 86, 1391.
http://dx.doi.org/10.1103/RevModPhys.86.1391

[2] Gröblacher, S., Hammerer, K., Vanner, M.R., et al. (2009) Observation of Strong Coupling between a Micromechanical Resonator and an Optical Cavity Field. Nature, 460, 724-727.
http://dx.doi.org/10.1038/nature08171

[3] Weis, S., Rivière, R., Deléglise, S., et al. (2010) Optomechanically Induced Transparency. Science, 330, 1520-1523.
http://dx.doi.org/10.1126/science.1195596

[4] Brennecke, F., Ritter, S., Donner, T., et al. (2008) Cavity Optomechanics with a Bose-Einstein Condensate. Science, 322, 235-238.
http://dx.doi.org/10.1126/science.1163218

[5] Teufel, J.D., Li, D., Allman, M.S., et al. (2011) Circuit Cavity Electromechanics in the Strong-Coupling Regime. Nature, 471, 204-208.
http://dx.doi.org/10.1038/nature09898

[6] Verhagen, E., Deléglise, S., Weis, S., et al. (2012) Quantum-Coherent Coupling of a Mechanical Oscillator to an Optical Cavity Mode. Nature, 482, 63-67.
http://dx.doi.org/10.1038/nature10787

[7] Safavi-Naeini, A.H., Alegre, T.P.M., Chan, J., et al. (2011) Electromagnetically Induced Transparency and Slow Light with Optomechanics. Nature, 472, 69-73.
http://dx.doi.org/10.1038/nature09933

[8] Fiore, V., Yang, Y., Kuzyk, M.C., et al. (2011) Storing Optical Information as a Mechanical Excitation in a Silica Optomechanical Resonator. Physical Review Letters, 107, 133601.
http://dx.doi.org/10.1103/PhysRevLett.107.133601

[9] Teufel, J.D., Donner, T., Li, D., et al. (2011) Sideband Cooling of Micromechanical Motion to the Quantum Ground State. Nature, 475, 359-363.
http://dx.doi.org/10.1038/nature10261

[10] Agarwal, G.S. and Huang, S. (2014) Nanomechanical Inverse Electromagnetically Induced Transparency and Confinement of Light in Normal Modes. New Journal of Physics, 16, Article ID: 033023.
http://dx.doi.org/10.1088/1367-2630/16/3/033023

[11] Dobrindt, J.M. and Kippenberg, T.J. (2010) Theoretical Analysis of Mechanical Displacement Measurement Using a Multiple Cavity Mode Transducer. Physical Review Letters, 104, Article ID: 033901.
http://dx.doi.org/10.1103/PhysRevLett.104.033901

[12] Hill, J.T., Safavi-Naeini, A.H., Chan, J., et al. (2012) Coherent Optical Wavelength Conversion via Cavity Optomechanics. Nature Communications, 3, 1196.
http://dx.doi.org/10.1038/ncomms2201

[13] Massel, F., Cho, S.U., Pirkkalainen, J.M., et al. (2012) Multimode Circuit Optomechanics near the Quantum Limit. Nature Communications, 3, 987.
http://dx.doi.org/10.1038/ncomms1993

[14] Tian, L. (2012) Adiabatic State Conversion and Pulse Transmission in Optomechanical Systems. Physical Review Letters, 108, Article ID: 153604.
http://dx.doi.org/10.1103/PhysRevLett.108.153604

[15] Ludwig, M., Safavi-Naeini, A.H., Painter, O., et al. (2012) Enhanced Quantum Nonlinearities in a Two-Mode Optomechanical System. Physical Review Letters, 109, Article ID: 063601.
http://dx.doi.org/10.1103/PhysRevLett.109.063601

[16] Tian, L. (2013) Robust Photon Entanglement via Quantum Interference in Optomechanical Interfaces. Physical Review Letters, 110, Article ID: 233602.
http://dx.doi.org/10.1103/PhysRevLett.110.233602

[17] Wang, Y.D. and Clerk, A.A. (2012) Using Interference for High Fidelity Quantum State Transfer in Optomechanics. Physical Review Letters, 108, Article ID: 153603.
http://dx.doi.org/10.1103/PhysRevLett.108.153603

[18] Dong, C., Fiore, V., Kuzyk, M.C., et al. (2012) Optomechanical Dark Mode. Science, 338, 1609-1613.
http://dx.doi.org/10.1126/science.1228370

[19] Qu, K. and Agarwal, G.S. (2013) Phonon-Mediated Electromagnetically Induced Absorption in Hybrid Opto-Electro- mechanical Systems. Physical Review A, 87, Article ID: 031802.
http://dx.doi.org/10.1103/PhysRevA.87.031802

[20] Yan, X.B., Cui, C.L., Gu, K.H., et al. (2014) Coherent Perfect Absorption, Transmission, and Synthesis in a Double- Cavity Optomechanical System. Optics Express, 22, 4886-4895.
http://dx.doi.org/10.1364/OE.22.004886

[21] Joshi, C., Larson, J., Jonson, M., et al. (2012) Entanglement of Distant Optomechanical Systems. Physical Review A, 85, Article ID: 033805.
http://dx.doi.org/10.1103/PhysRevA.85.033805

[22] Jing, H., Özdemir, S.K., Lü, X.Y., et al. (2014) PT-Symmetric Phonon Laser. Physical Review Letters, 113, Article ID: 053604.
http://dx.doi.org/10.1103/PhysRevLett.113.053604

[23] Dobrindt, J.M., Wilson-Rae, I. and Kippenberg, T.J. (2008) Parametric Normal-Mode Splitting in Cavity Optomechanics. Physical Review Letters, 101, Article ID: 263602.
http://dx.doi.org/10.1103/PhysRevLett.101.263602

分享
Top