基于遗传算法的最速降线问题求解
The Solution of Brachistochrone Problem Based on the Genetic Algorithm

作者: 陈德锋 , 王江涌 :汕头大学理学院物理系,广东 汕头; 廖桂颖 :汕头大学理学院数学系,广东 汕头;

关键词: 遗传算法最速降线贝塞尔曲线粘滞阻力摩擦阻力Genetic Algorithm Brachistochrone Curve Bezier Curve Viscous Resistance Frictional Resistance

摘要:
本文介绍了基于遗传算法解决最速降线问题的方法。我们使用算法精确地解出了无阻力、无初速度的最速降线。在此基础上推广,算出了考虑粘滞阻力或摩擦阻力的最速降线。并将计算结果与文献中的结果进行了比较,对唯一不一致的计算结果进行了详细的分析,证明了我们计算结果的正确性。结果显示,随着阻力的增大,最速降线将持续变直。

Abstract: The Brachistochrone problem has been solved by the genetic algorithm method. The calculated results are exactly the same as the analytical solutions under the conditions of no resistance and no initial velocity. Furthermore, this method is extended for considering both the viscous and frictional resistances. The simulated results are compared with the ones in literature. The discrepancy of the only one simulated result is detailedly discussed in order to verify the current simulation result. Finally, the result shows that with the increase of the resistance, the brachistochrone will continually become flatter.

文章引用: 陈德锋 , 廖桂颖 , 王江涌 (2015) 基于遗传算法的最速降线问题求解。 力学研究, 4, 76-88. doi: 10.12677/IJM.2015.44010

参考文献

[1] Vratanar, B. and Saje, M. (1998) On the Analytical Solution of the Brachistochrone Problem in a Non-Conservative Field. International Journal of Non-Linear Mechanics, 33, 489-505.
http://dx.doi.org/10.1016/S0020-7462(97)00026-7

[2] 周嘉炜, 曹炳阳, 过增元. 具有黏滞阻力时的最速降线[J]. 力学与实践, 2011, 33(3): 11-14.

[3] Hayen, J.C. (2005) Brachistochrone with Coulomb Friction. International Journal of Non-Linear Mechanics, 40, 1057- 1075.
http://dx.doi.org/10.1016/j.ijnonlinmec.2005.02.004

[4] 尤明庆. 最速降线求解和摩擦力影响的研究[J]. 河南理工大学学报, 2005, 24(1): 83-88.

[5] 周先东, 马翠. 最速降线问题的一种新解法[C]//第一届中国智能计算大会论文集. 庐山: 中国运筹学会, 2007: 59-62.

[6] Wensrich, C.M. (2004) Evolutionary Solutions to the Brachistochrone Problem with Coulomb Friction. Mechanics Research Communications, 31,151-159.
http://dx.doi.org/10.1016/j.mechrescom.2003.09.005

[7] 陈爱军, 李金宗, 李东东. 一种改进的随机圆检测算法[J]. 光电工程, 2006, 33(12): 91-95.

分享
Top