强阻尼波动方程的近似惯性流形
Approximate Inertial Manifold of Strongly Damped Wave Equation

作者: 张素方 , 张建文 :太原理工大学数学学院,山西 太原 ;

关键词: 强阻尼近似惯性流形波动方程Strongly Damped Approximate Inertial Manifold Wave Equation

摘要:
本文主要研究了强阻尼波动方程的整体吸引子由光滑流形来逼近。构造了强阻尼波动方程的一个非线性近似惯性流形,并得到了该近似惯性流形逼近整体吸引子的阶数估计。

Abstract: In this paper, the global attractor approximation by smooth manifold is considered in strongly damped equation. A nonlinear approximate inertial manifold of strongly damped wave equation is constructed. The order of approximation of the inertial manifold to the global attractor is obtained.

文章引用: 张素方 , 张建文 (2015) 强阻尼波动方程的近似惯性流形。 理论数学, 5, 278-283. doi: 10.12677/PM.2015.56040

参考文献

[1] Clarkson, P.A., Leveque, R.J. and Saxton, R.A. (1986) Solitary-Wave Interaction in Elastic Rods. Studies in Applied Mathematics, 75, 95-122.
http://dx.doi.org/10.1002/sapm198675295

[2] Seyler, C.E. and Fanstermacher, D.L. (1984) Asymmetric Regularized Long Wave Equation. Physics of Fluids, 27, 58-66.

[3] Xie, Y.Q. and Zhong, C.K. (2009) Asymptotic Behavior of a Class Nonlinear Evolution Equation. Nonlinear Analysis, 71, 5095-5105.
http://dx.doi.org/10.1016/j.na.2009.03.086

[4] Xie, Y.Q., Yang, L. and Qin, G.X. (2007) Strain Solitary Waves in a Nonlinear Elastic Rod. Journal of Hunan University, 34, 58-61.

[5] Foias, C., Sell, G. and Temam, R. (1985) Varies Inertilles des Equations Differentials Dissipative. C. R. Acad Sci. Paris Ser I Math, I301, 139-142.

[6] 蒲志林, 陈光淦. 非线性Schodinger-Boussnesq的近似惯性流形[J]. 四川师范大学学报: 自然科学版, 2005, 28(4): 419-421.

[7] 魏赟赟, 陈光淦. 非自治反应扩散方程的近似惯性流形[J]. 四川师范大学学报: 自然科学版, 2005, 28(4): 419-421.

[8] Xie, Y.Q. and Zhong, C.K. (2007) The Existence of Global Attractors for a Class Nonlinear Evolution Equation. Journal of Mathematical Analysis and Applications, 336, 54-69.
http://dx.doi.org/10.1016/j.jmaa.2006.03.086

分享
Top