﻿ 应用指数函数方法求解KdV型方程

# 应用指数函数方法求解KdV型方程Application of Exp-Function Method to Solve KdV-Type Equation

Abstract: Exp-function method is an effective way to construct exact solutions of partial differential equations in mathematics and physics. This paper applies Exp-function method to obtain the new exact solutions of KdV-type equation, and depicts the figures of the solutions respectively in order to better understand the properties of the solutions.

[1] Ablowitz, M.J. and Clarkson, P.A. (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, New York. http://dx.doi.org/10.1017/CBO9780511623998

[2] 闫振亚. 复杂非线性波的构造性理论及其应用[M]. 北京: 科学出版社, 2007.

[3] 范恩贵, 张鸿庆. 非线性孤子方程的齐次平衡法[J]. 物理学报, 1998(47): 333-361.

[4] 李志斌, 张善卿. 非线性波动方程准确孤立波解的符号计算[J]. 数学物理学报, 1997(17): 81-89.

[5] 楼森岳, 唐晓艳. 非线性数学物理方程[M]. 北京: 科学出版社, 2006.

[6] He, J.-H. and Wu, X.-H. (2006) Exp-Function Method for Nonlinear Wave Equations. Chaos, Solitons and Fractals, 30, 700-708. http://dx.doi.org/10.1016/j.chaos.2006.03.020

[7] Bluman, G.W. and Anco, S.C. (2002) Symmetry and Integration Methods for Differential Equations. Springer, New York.

[8] Dey, B. (1985) Domain Wall Solution of KdV like Eq-uation with Higher Order Nonlinearity. Journal of Physics A: Mathematical and General, 19, L9-L12. http://dx.doi.org/10.1088/0305-4470/19/1/003

[9] Zhang, W.G., Chang, Q.S. and Jiang, B.G. (2002) Explicit Exact Solitary-Wave Solutions for the Compound KdV- Type and Compound KdV-Burgers-Type Equations with Nonlinear Terms of Any Order. Chaos, Solitons and Fractals, 13, 311-319. http://dx.doi.org/10.1016/S0960-0779(00)00272-1

Top