三个组的G-设计
G-Design with Three Groups

作者: 朱莉 , 王建 :南通职业大学,江苏 南通;

关键词: t-设计四元系烛台型设计G-设计t-Designs Quadruple Systems Candelabra Systems G-Design

摘要: G-设计是可分组设计(GD)的推广,同时又是烛台型设计(CQS)的特例,它在四元系设计中起到重要作用。文章应用Stern和Lenz关于图因子分解的结论,通过直接构造法,得到具有三个组的G-设计存在的充分必要条件:

Abstract: As a special example of the candelabra systems (CQS), G-design is the extension of group divisible designs (GD), which plays an important role in quadruple systems’ construction. With application of Stern and Lenz’s result on one-factorization of graphs, by direct construction, it is given that the sufficient and necessary condition for the existence of the G-design with three groups is that.

文章引用: 朱莉 , 王建 (2015) 三个组的G-设计。 应用数学进展, 4, 365-368. doi: 10.12677/AAM.2015.44045

参考文献

[1] 沈灏. 组合设计理论[M]. 上海: 上海交通大学出版社, 2008.

[2] Mohacsy, H. and Ray-Chaudhuri, D.K. (2002) Candelabra Systems and Designs. Journal of Statistical Planning and Inference, 106, 419-448.
http://dx.doi.org/10.1016/S0378-3758(02)00226-4

[3] Mills, W.H. (1981) A Covering of Triples by Quadruples. Congr. Numer, 33, 253-260.

[4] Mills, W.H. (1990) On the Existence of H Designs. Congr. Numer, 79, 129-141.

[5] Hartman, A. (1980) Tripling Quadruple Systems. Ars Combinatoria, 10, 255-309.

[6] Hartman, A. (1994) The Fundamental Construction for 3-Designs. Discrete Mathematics, 124, 107-132.
http://dx.doi.org/10.1016/0012-365X(92)00055-V

[7] Bondy, J.A. and Murty, U.S.R. (1976) Graph Theory with Applications. Macmillan Press, London.

[8] Stern, G. and Lenz, H. (1980) Sterner Triple Systems with Given Sub-spaces: Another Proof of the Doyen-Wilson Theorem. Bollettino Unione Matematica Italiana (Ser. A), 17, 109-114.

分享
Top