基于CO2扩散模拟的校园空间低碳优化研究
The Research on Campus Space Optimization of Low Carbon Based on CO2 Diffusion Simulation

作者: 时泳 * , 付士磊 * , 郭佳 :沈阳建筑大学,辽宁 沈阳;

关键词: 碳源CFD模拟校验优化策略Carbon Source CFD Simulation Check Optimization Strategy

摘要:
在保持绿地面积总量的前提下提高植物固碳能力,并以此提出优化校园绿地空间的布局模式。本文以沈阳建筑大学校园为依托,开展了基于绿地固碳功能与CO2空间分布相耦合的城市绿地空间布局研究,通过CFD模拟技术获取校园CO2空间分布格局,利用CO2空间数据耦合绿地固碳功能,揭示植物固碳效应最佳边界。最终提出了校园绿地空间布局模式,优化了校园绿地空间布局,使校园绿地在有限的面积下发挥了最大的生态效应。研究结果为城市以及更大范围内的绿地空间布局模式的选择, 应对全球气候变化和温室气体减排,以及提升城市空间环境质量方面具有重要意义。

Abstract: On the premise of keeping total green areas to improve plant carbon sequestration ability, the model of optimizing the layout of the campus green space was put forward. This article focused on Shenyang Architecture University campus, and discussed urban green space layout based on the relationship between the green carbon sequestration function and CO₂ spatial distribution. At the same time, we obtained CO₂ space distribution pattern through CFD simulation technology, and revealed that plant carbon sequestration effect was the best boundary by using of CO₂ space data with green carbon sequestration function. The paper raised the mode of campus green space layout, optimized the campus green space layout, and made the campus green space in the limited area under playing the biggest ecological effect. The result is of great significance for the city, a broader range of green space layout pattern choice, response to global climate change and greenhouse gas emissions, and promotion of the urban space environment quality.

文章引用: 时泳 , 付士磊 , 郭佳 (2015) 基于CO2扩散模拟的校园空间低碳优化研究。 世界生态学, 4, 100-109. doi: 10.12677/IJE.2015.44014

参考文献

[1] Feldman, D.R., Collins, W.D., Gero, P.J., Torn, M.S., Mlawer, E.J. and Shippert, T.R. (2015) Observational Determination of Surface Radiative Forcing by CO2 from 2000 to 2010. Nature, 519, 339-343.
http://dx.doi.org/10.1038/nature14240

[2] 朱鹏, 姚亦锋, 张培刚. 城市绿地系统景观生态规划探讨[J]. 城市环境与城市生态, 2006, 19(1): 17-19.

[3] 刘滨谊, 姜允芳. 论中国城市绿地系统规划的误区与对策[J]. 城市规划, 2002, 26(2): 76-80.

[4] 付士磊, 等. CO2浓度升高对沈阳市银杏生长及光合固碳能力的影响[J]. 辽宁工程技术大学学报, 2006, 25: 269- 271.

[5] 武鸣, 范秋云. 长沙城区大气中二氧化碳浓度变化及与其它污染物相关性分析[J]. 四川环境, 2013, 36(6): 39-43.

[6] 义白璐, 韩骥, 等. 区域碳源碳汇的时空格局——以长三角地区为例[J]. 应用生态学报, 2015, 26(4): 973-976.

[7] 王晓琳, 姬长生, 张振芳, 周爽. 基于碳足迹的煤炭矿区碳排放源构成分析[J]. 煤矿安全, 2012, 4(59): 169-170.

[8] 杨士弘. 城市绿化树木碳氧平衡效应研究[J]. 城市环境与城市生态, 1996, 9(1): 37-39.

[9] 肖海文, 柳登发, 张盛莉, 翟俊. 人工湿地处理雨水径流的设计方法和实例[J]. 中国给水排水, 2013, 29(8): 37- 41.

[10] Mochida, A. and Lun, I.Y.F. (2008) Prediction of Wind Environment and Thermal Comfortat Pedestrian Levelin Urban Area. Journal of Wind Engineering and Industrial Aerodynamics, 96, 1498-1527.

[11] 李鹍. 基于遥感与CFD仿真的城市热环境研究[D]: [博士论文]. 武汉: 华中科技大学, 2008, 53-55.

[12] 孙丽霞. 谈高校低碳校园建设的内涵及其路径[J]. 商业经济, 2011, 11(22): 15-21.

[13] Mensink, C. and Cosemans, G. (2008) From Traffic Flow Simulations to Pollutant Concentrations in Street Canyons and Backyards. Environmental Modelling and Software, 23, 288-295.

[14] 高畅, 石铁矛, 刘大鹏, 周媛, 郗凤明. 沈阳市绿地生态信息获取与数据库建设研究[J]. 湖南农业科学, 2011, 9(17): 143-146.

[15] Lam, K.M. and To, A.P. (2006) Reliability of Numerical Computation of Pedestrian-Level Wind Environment around a Row of Tall Buildings. Wind and Structures, 8, 473-492.
http://dx.doi.org/10.12989/was.2006.9.6.473

[16] 张虎. 从自然通风角度论合肥地区住宅建筑群体布局[J]. 安徽建筑工业学院学报(自然科学版), 1996, 4(2): 38- 42.

[17] 张彬彬, 史英杰, 解瑞升. 浅议沈阳建筑大学校园生态的得与失[C]. 多元与包容——中国城市规划年会论文集: 2012年卷. 昆明: 云南科学技术出版社, 2012: 20-22.

分享
Top