﻿ 基于泰勒展开的线性多步法构造方法的研究

# 基于泰勒展开的线性多步法构造方法的研究A Study on Construction for Linear Multi-Step Methods Based on Taylor Expansion

Abstract: Following the previous literature on multi-step formulae for initial value problems of ODEs (ordi-nary differential equations), we study the construction for linear multi-step methods based on Taylor expansion in this paper. We try the weighted average method and derive a new formula. Then we check this new method in an example, and compare the original two formulae and con-structed new formula. Via such numerical experiment, this method is reliable. Some constructed new formulae can have relatively high stability and small error while solving ODEs initial value problems.

[1] Atkinson, K.E., 著. 数值分析引论[M]. 匡蛟勋, 译. 上海: 上海科学技术出版社, 1986.

[2] 李庆扬, 关治, 白峰杉. 数值计算原理[M]. 北京: 清华大学出版社, 2000.

[3] 关治, 陆金甫. 数值分析基础[M]. 北京: 高等教育出版社, 1998.

[4] 李庆扬, 王能超, 易大义. 数值分析[M]. 第4版. 武汉: 华中科技大学出版社, 2006.

[5] Henrici, P. (1962) Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York.

[6] 李大侃, 编. 常微分方程数值解[M]. 杭州: 浙江大学出版社, 1994.

[7] 李庆扬. 常微分方程数值解法[M]. 北京: 高等教育出版社, 1992.

[8] 李荣华, 冯果忱. 微分方程的数值解法[M]. 第3版. 北京: 高等教育出版社, 1996.

[9] Dahlquist, G. (1963) A Special Stability Problem for Linear Multistep Methods. BIT, 3, 27-43.

[10] Butcher, J.C. (1975) A Stability Property of Implicity Runge-Kutta Methods. BIT, 15, 358-361.

[11] 刘丹. 常微分方程数值解的长时间性态[D]: [硕士论文]. 哈尔滨: 黑龙江大学, 2004.

[12] 吕万金. 一类常微分方程长时间数值计算稳定性分析[J]. 黑龙江大学自然科学学报, 2000, 17(4): 4-6.

Top