TRIP钢在高速应变率下动态响应机制研究
The Study on Dynamic Response Mechanism of TRIP Steel in the Highest Strain Rate

作者: 陈 巍 , 胡士廉 , 高永亮 , 杨 阳 , 孙国进 , 周宏凯 , 李经纬 :中国兵器科学研究院宁波分院,浙江 宁波;

关键词: 应变率残余奥氏体动态强度Strain Rate Residual Austenite Dynamic Strength

摘要:
本文分析了TRIP钢在应变率1~4000 S−1之间动态力学行为,以及材料在高变形速率下的相变过程和机理,应变率1500~2500 S−1之间,是TRIP效应发生的明显阶段,在此应变率下TRIP钢充分的发挥了的应变强化、应变硬化、相变强化效应,TRIP钢在2000 S−1应变率下动态屈服强度明显、动态强塑积最高,具有较高的吸能效应。经过研究分析,不同应变率下残余奥氏体的转变量和形态机理是影响动态强度的主要因素之一。

Abstract: In this paper, the dynamic mechanics property of TRIP steel in the strain rate range of 1 - 4000 S−1 was carried out. The material transformation process and mechanism in the high strain rate were analyzed. The TRIP effect was obvious in the strain rate range of 1500 - 2500 S−1. The excellent strain strengthening, strain hardening, and transformation strengthening were shown in the strain rate range of 1500 - 2500 S−1. TRIP steel has high dynamic yield strength, dynamic response and energy-absorbing capacity under the strain rate of 2000 S−1. The transformed amount and behavior of residual austenite affect the dynamic strength in different strain rates.

文章引用: 陈 巍 , 胡士廉 , 高永亮 , 杨 阳 , 孙国进 , 周宏凯 , 李经纬 (2015) TRIP钢在高速应变率下动态响应机制研究。 材料科学, 5, 227-234. doi: 10.12677/MS.2015.56031

参考文献

[1] Fischer, F.D., Reisner, G., Werner, E., Tanaka, K., Cailletaud, G. and Antretter, T. (2000) A New View on Transfor-mation Induced Plasticity. International Journal of Plasticity, 16, 723-748.
http://dx.doi.org/10.1016/S0749-6419(99)00078-9

[2] Kuziak, R., Kawalla, R. and Waengler, S. (2008) Advanced High Strength Steels for Automotive Industry. Archives of Civil and Mechanical Engineering, 8, 103-117.
http://dx.doi.org/10.1016/S1644-9665(12)60197-6

[3] 徐祖耀. 马氏体相变与马氏体[M]. 北京: 科学出版社, 1999.

[4] Chiou, S.T., Cheng, W.C. and Lee, W.S. (2004) The Analysis of the Microstructum Changes of a Fe-Mn-AI Alloy under Dynamic Impact Tests. Materials Science and Engineering, 386, 460-467.
http://dx.doi.org/10.1016/S0921-5093(04)01026-3

分享
Top