SnO2-Zn2SnO4复合陶瓷的压敏特性研究
The Varistor Property of SnO2-Zn2SnO4 Composite Ceramics

作者: 刘欢欢 , 李立本 , 臧国忠 , 李 永 , 左正伟 :河南科技大学物理工程学院,河南 洛阳;

关键词: 压敏陶瓷电学非线性肖特基势垒氧空位Varistor Electrical Nonlinearity Schottky Barrier Oxygen Vacancies

摘要:
采用传统陶瓷工艺制备了(1 − x) SnO2 + x Zn2SnO4复合陶瓷,并测试了样品的电流-电压非线性关系。结果表明:随着Zn2SnO4含量的变化,当x = 0.13时,样品的半导化程度最高,压敏电压达到最低值3 V/mm。对样品的势垒高度测量表明,势垒高度随Zn2SnO4含量的增加变化不明显,但随着测试温度的升高而增大,室温下样品的势垒高度约为0.8 eV。进一步研究显示,电模量虚部频谱出现了峰值,随着温度的升高,峰向高频方向移动。通过Arrhenius关系拟合发现,峰值对应的激活能约为0.38 eV。以上结果说明,晶界处的肖特基势垒是SnO2-Zn2SnO4复合陶瓷电学非线性性质起源的重要原因之一,氧空位对于SnO2-Zn2SnO4复合陶瓷晶粒的半导化和势垒的形成有重要作用。

Abstract: SnO2-Zn2SnO4 composite ceramics have been prepared using the traditional ceramic process and the relations between the current density and applied voltage have been investigated. The results show that with the increase of Zn2SnO4 content, the breakdown voltage of the SnO2-Zn2SnO4 com-posite ceramics reached a minimum and simultaneously, the semi-conductive degree achieved the maximum at x = 0.13. With the increase of Zn2SnO4 content, the barrier height changed slightly and the value for each sample was about 0.8 eV at room temperature, whereas, the barrier height increased obviously with increasing testing temperature. In the imaginary part of electric modulus spectrum, a peak was presented and with the increase of temperature, this peak shifted to high frequency. From the shifting of modulus peak, the activation energy about 0.38 eV was obtained according to the Arrhenius law. The results suggest that the Schottky barrier at the grain boundary plays a key role in the origin of the nonlinear property for SnO2-Zn2SnO4 composite ceramics and the oxygen vacancies are important to the barrier formation.

文章引用: 刘欢欢 , 李立本 , 臧国忠 , 李 永 , 左正伟 (2015) SnO2-Zn2SnO4复合陶瓷的压敏特性研究。 材料科学, 5, 219-226. doi: 10.12677/MS.2015.56030

参考文献

[1] 赵景畅, 李娴, 李龙土. 空气中烧结制备SrTiO3基压敏电阻器的研究[J]. 电子元件与材料, 2011, 30(1): 21-24.

[2] 邢晓东, 谢道华, 胡明. 压敏电阻陶瓷材料的研究进展[J]. 电子元件与材料, 2004, 23(2): 21-24.

[3] Su, W.B., Wang, J.F., Chen, H.C., et al. (2002) Nonlinear Electrical Behavior of the TiO2•WO3 Varistor. Journal of Applied Physics, 92, 4779-4783.
http://dx.doi.org/10.1063/1.1503853

[4] Kutty, T.R.N. and Philip, S. (1995) Low Voltage Varistors Based on SrTiO3 Ceramics. Materials Science and Engineering: B, 33, 58-66.
http://dx.doi.org/10.1016/0921-5107(94)01205-9

[5] Clarke, D.R. (1999) Varistor Ceramics. Journal of the American Ceramic Society, 82, 485-502.
http://dx.doi.org/10.1111/j.1151-2916.1999.tb01793.x

[6] Zhang, C., Zhou, D., Lu, W., et al. (2001) Micro-structure and Properties of Low-Voltage ZnO Varistor Ceramics. Journal of Materials Science: Materials in Electronics, 12, 357-360.
http://dx.doi.org/10.1023/A:1011245624525

[7] Yamaoka, N., Masuyama, M. and Fukui, M. (1983) SrTiO3-Based Boundary Layer Capacitor Having Varistor Characteristics. American Ceramic Society Bulletin, 62, 698-703.

[8] Ji, H., Li, C., Meng, H., et al. (2005) Effects of Rare-Earth La2O3 Addition on Microstructures and Electrical Properties of SrTiO3 Varistor-Capacitor Dual Functional Ceramics. Journal of Rare Earths, 23, 55.

[9] Zang, G.Z., Wang, J.F., Chen, H.C., et al. (2005) Nonlinear Electrical Behaviour of Composite SnO2-Zn2SnO4 System. Chinese Physics Letters, 22, 750-753.
http://dx.doi.org/10.1088/0256-307X/22/3/064

[10] Zang, G.Z., Wang, X.F., Li, L.B., et al. (2013) Sintering and Varistor Behaviour of SnO2-Zn2SnO4 Composite Ceramics. Journal of Electroceramics, 31, 134-137.
http://dx.doi.org/10.1007/s10832-013-9813-0

[11] Zang, G.Z., Lv, B.S., Li, L.B., et al. (2013) Effect of Zn2SnO4 on the Sintering and Electrical Properties of SnO2- Zn2SnO4 Ceramics. Journal of Electroceramics, 30, 228-231.
http://dx.doi.org/10.1007/s10832-013-9789-9

[12] Zang, G.Z., Li, L.B., Liu, H.H., et al. (2013) Impedance Performances of SnO2-Zn2SnO4 Composite Ceramics. Journal of Alloys and Compounds, 580, 611-613.
http://dx.doi.org/10.1016/j.jallcom.2013.07.152

[13] Zang, G.Z., Zhou, F.Z., Cao, J.X., et al. (2014) Varistor and Dielectric Properties of Cr2O3 Doped SnO2-Zn2SnO4 Composite Ceramics. Current Applied Physics, 14, 1682-1686.
http://dx.doi.org/10.1016/j.cap.2014.07.002

[14] Li, J., Zhao, X., Gu, F., et al. (2012) Defects and DC Electrical Degradation in CaCu3Ti4O12 Ceramics: Role of Oxygen Vacancy Migration. Applied Physics Letters, 100, Article ID: 202905.
http://dx.doi.org/10.1063/1.4720151

[15] Lunkenheimer, P., Bobnar, V., Pronin, A.V., et al. (2002) Origin of Apparent Colossal Dielectric Constants. Physical Review B, 66, Article ID: 052105.
http://dx.doi.org/10.1103/PhysRevB.66.052105

[16] 王振林, 李盛涛. 氧化锌压敏陶瓷制造及应用[M]. 北京: 科学出版社, 2009.

[17] 赵学童, 李建英, 贾然, 李盛涛. 直流老化及热处理对ZnO压敏陶瓷缺陷结构的影响[J]. 物理学报, 2009, 62(7): 077701.

分享
Top