中山供电局行业错峰优化研究及系统开发应用
Study on Optimization of Peak Load Shifting in Zhongshan Power Supply Bureau and Development of the Support System

作者: 郭志炯 :中山供电局,广东 中山; 郭自豪 , 郭少青 , 匡洪辉 :清大科越公司,北京;

关键词: 需求侧管理错峰优化错峰意愿Demand Side Management Peak Load Shifting Optimization Peak Load Shifting Will

摘要:
本文从中山供电局工业客户用电行为着手,研究其用电行为特性和生产特点,实施错峰优化,在确保错峰效果的同时,降低对企业造成的影响,减少了企业的停电时间,比原方案更能得到工业客户的理解和支持配合,有效提升客户自觉错峰率,从而减少开展错峰工作所需要的人力物力,并通过优化错峰方案,争取将有限的电能用到对社会贡献最大的行业和企业。实施错峰优化后,错峰效率的提升将降低对工业客户强制停限电的频率;对客户提供差异化的方案,降低了对工业客户正常生产的影响,树立以客户为先,提供优质服务的形象。

Abstract: Starting with industrial power customers’ behavior of Zhongshan Power Supply Bureau, this paper studies the electrical behavior and production characteristics, and implements staggering power consumption optimization. Then an optimization method is proposed, which could guarantee the peak load shifting effect, and at the same time could reduce the influence on users. In this way, peak load shifting could reduce outage time and get industrial customers’ understanding and support compared to the former way. And with the peak load shifting support system, manpower could be cut down. Based on the optimization of peak load shifting scheme, the limited power could be used in the most efficient enterprise. The improvement of peak load shifting will reduce industrial customers’ forced outage frequency as well as the influence on the normal production of the industrial customers, and help the power supply bureau put the customers first, providing quality services.

文章引用: 郭志炯 , 郭自豪 , 郭少青 , 匡洪辉 (2015) 中山供电局行业错峰优化研究及系统开发应用。 智能电网, 5, 262-269. doi: 10.12677/SG.2015.55031

参考文献

[1] 曾鸣 (2001) 电力需求侧管理. 中国电力出版社, 北京.

[2] 周昭茂 (2007) 电力需求侧管理技术支持系统. 中国电力出版社, 北京.

[3] Novosel, D. (2008) Emerging technologies in support of smart grids. Proceedings of IEEE Power and Energy Society General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, Pitts-burgh, 20-24 July 2008.
http://dx.doi.org/10.1109/pes.2008.4596957

[4] 陈树勇, 宋书芳, 李兰欣, 等 (2009) 智能电网技术综述. 电网技术, 8, 1-7.

[5] 余贻鑫, 栾文鹏 (2009) 智能配电网概述. 第一届智能电网研究学术论坛, 天津, 236-242.

[6] Dem and Response and Smart Grid Coalition. Accelerating the use of demand response and smart grid technologies is an essential part of the solution to America’s energy, economic and environmental problems.

[7] 杨浩, 张磊, 何潜, 等 (2010) 基于自适应模糊C均值算法的电力负荷分类研究. 电力系统保护与控制, 16, 111- 115.

[8] Chicco, G., Napoli, R. and Piglione, F. (2006) Comparisons among clustering techniques for electricity cus-tomer classification. IEEE Transactions on Power Systems, 21, 933-940.
http://dx.doi.org/10.1109/TPWRS.2006.873122

[9] 黎祚, 周步祥, 林楠 (2012) 基于模糊聚类与改进BP算法的日负荷特性曲线分类与短期负荷预测. 电力系统保护与控制, 3, 56-60.

分享
Top