﻿ 通用的定日镜准确方位–俯仰跟踪公式及其应用研究

# 通用的定日镜准确方位–俯仰跟踪公式及其应用研究Study on the General Accurate Azimuth-Elevation Tracking Angle Formula for Heliostat and Its Applications

Abstract: With respect to the widely used azimuth-elevation dual axis tracking heliostats, this paper gives the accurate azimuth-elevation tracking angle formula for a heliostat with a mirror-pivot offset and other six typical geometric error parameters. A nonlinear least-squares mathematical model is es-tablished to solve the six typical angular tracking parameters of the azimuth-elevation tracking he-liostat based on experimental tracking data, and also gives the two practical numerical solution al-gorithms. We specially designed a heliostat model and with the help of optical test platform of 3D coordinate measuring machine conducted the indoor laser beam azimuth-elevation tracking expe-riments. The experimental results validated the general tracking angle formula and the method for estimating the six typical angle error parameters of an azimuth-elevation tracking heliostat. This general accurate azimuth-elevation tracking angle formula can effectively compensate the heliostat pedestal tilt, the initial angle biases of the two rotational axes and the non orthogonal angle error of the two axes and so on. This tracking angle formula has been successfully applied to the 100 helios-tats in Badaling 1 MW solar thermal tower power plant (DAHAN solar power plant) in Beijing, China.

[1] Stone, K. and Jones, S. (1999) Analysis of solar two heliostat tracking error sources. Sandia Laboratories, Albuquer-que.

[2] Chong, K. and Wong, C. (2009) General formula for on-axis sun-tracking system and its application in im-proving tracking accuracy of solar collector. Solar Energy, 83, 298-305.
http://dx.doi.org/10.1016/j.solener.2008.08.003

[3] Guo, M., Wang, Z., Liang, W., Zhang, X., Zang, C., Lu, Z. and Wei, X. (2010) Tracking formulas and strategies for a receiver oriented dual-axis tracking toroidal heliostat. Solar Energy, 84, 939-947.
http://dx.doi.org/10.1016/j.solener.2010.02.015

[4] Reda, I. and Andreas, C. (2004) Solar position algorithm for solar radiation applications. Solar Energy, 76, 577-589.
http://dx.doi.org/10.1016/j.solener.2003.12.003

[5] Guo, M., Sun, F., Wang, Z. and Zhang, J. (2013) Properties of a general azimuth-elevation tracking angle formula for a heliostat with a mirror-pivot offset and other angular errors. Solar Energy, 96, 159-167.
http://dx.doi.org/10.1016/j.solener.2013.06.031

[6] 郭明焕 (2011) 太阳定日镜的误差分析和聚光性能评价方法研究. 博士论文, 中国科学院研究生院, 北京.

[7] Guo, M., Wang, Z., Zhang, J., Sun, F. and Zhang, X. (2011) Accurate altitude-azimuth tracking angle formulas for a heliostat with mirror-pivot offset and other fixed geometrical errors. Solar Energy, 85, 1091-1100.
http://dx.doi.org/10.1016/j.solener.2011.03.003

[8] Guo, M., Wang, Z., Zhang, J., Sun, F. and Zhang, X. (2012) Determination of the angular parameters in the general altitude-azimuth tracking angle formulas for a heliostat with a mirror-pivot offset based on experimental tracking data. Solar Energy, 86, 941-950.
http://dx.doi.org/10.1016/j.solener.2011.12.025

[9] Sun, F., Guo, M., Wang, Z., Liang, W., Xu, Z., Yang, Y. and Yu, Q. (2015) Study on the heliostat tracking correction strategies based on an error-correction model. Solar Energy, 111, 252-263.
http://dx.doi.org/10.1016/j.solener.2014.06.016

Top