基于复杂网络的图像特征提取及多特征融合方案探究
Image Feature Extraction Based on Complex Network and Multi-Feature Fusion Schemes Exploration in CBIR

作者: 高剂斌 :北京工商大学理学院数学系,北京;桂林理工大学理学院,广西 桂林; 李裕梅 * , 张慧娜 :北京工商大学理学院数学系,北京;

关键词: 基于内容的图像检索复杂网络关键点拓扑结构多特征融合Content-Based Image Retrieval Complex Network SIFT Keypoints Topological Structure Multi-Feature Fusion

摘要:
图像形状特征的提取是图像检索中重要的研究内容,本文提出一种基于复杂网络模型的图像形状特征提取方法。提取图像的SIFT关键点,在此基础上进行分块处理并逐一在每个子图上面构建复杂网络初始模型,利用最小生成树分解的方法对网络进行动态演化,提取不同子图不同时刻下的网络特征作为形状特征。本文将形状特征与颜色特征、纹理特征进行融合,通过实验比较,说明此融合方案在CBIR应用中确实具有优势。

Abstract: Image shape feature’s extraction is an important research content in content-based image retrieval, and an image shape feature extraction method by using complex network model is proposed in this paper. First, SIFT keypoints of an image are extracted, and then the image is divided into blocks such that the initial complex network model can be built in each block respectively. After that, minimum spanning tree decomposition method is used for the network’s dynamic evolution, and the network features at different moments in different blocks are extracted as the image’s shape features. Furthermore, the shape features are combined with the color and texture features and a kind of fusion feature is obtained. By experiment results comparison, it shows that the fusion feature does have advantages in CBIR.

文章引用: 高剂斌 , 李裕梅 , 张慧娜 (2015) 基于复杂网络的图像特征提取及多特征融合方案探究。 图像与信号处理, 4, 101-110. doi: 10.12677/JISP.2015.44012

参考文献

[1] da Costa, L.F., Rodrigues, F.A., Travieso, G., et al. (2008) Characterization of complex networks: A survey of measurements. Advances in Physics, 56, 167-242.
http://dx.doi.org/10.1080/00018730601170527

[2] Goncalves, W.N., Silva, J.A. and Bruno, O.M. (2010) A rotation invariant face recognition method based on complex network. Proceedings of the 15th Iberoamerican Congress Conference on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP’10), Sao Paulo, 8-11 November 2010, 426-433.
http://dx.doi.org/10.1007/978-3-642-16687-7_57

[3] Backes, A.R., Martinez, A.S. and Bruno, O.M. (2011) Texture analysis using graphs generated by deterministic partially self-avoiding walks. Pattern Recognition, 44, 1684-1689.
http://dx.doi.org/10.1016/j.patcog.2011.01.018

[4] Tang, J., Jiang, B., Chang, C.C., et al. (2012) Graph structure analysis based on complex network. Digital Signal Processing, 22, 713-725.
http://dx.doi.org/10.1016/j.dsp.2012.04.011

[5] Backes, A.R., Casanova, D. and Bruno, O.M. (2009) A complex network based approach for boundary shape analysis. Pattern Recognition, 42, 54-67.
http://dx.doi.org/10.1016/j.patcog.2008.07.006

[6] Backes, A.R. and Bruno, O.M. (2010) Shape classification using complex network and multi-scale fractal dimension. Pattern Recognition Letters, 31, 44-51.
http://dx.doi.org/10.1016/j.patrec.2009.08.007

[7] 郅大鹏, 等 (2013) 多模复杂网络模型的形状特征提取方法. 计算机科学与探索, 6, 570-576.

[8] 汤进, 等 (2013) 基于复杂网络的图像建模与特征提取方法. 计算机工程, 5, 243-252.

[9] Backes, A.R., Casanova, D. and Bruno, O.M. (2009) A complex network-based approach for boundary shape analysis. Pattern Recognition, 42, 54-67.
http://dx.doi.org/10.1016/j.patcog.2008.07.006

[10] 束鑫, 吴小俊, 潘磊 (2009) 一种新的基于形状轮廓点分布的图像检索. 光电子•激光, 10, 1385-1389.

[11] Luo, B. and Edwin, R.H. (2001) Structural graph matching using the EM algorithm and singular value decomposition. Pattern Analysis and Machine Intelligence, 23, 1120-1136.
http://dx.doi.org/10.1109/34.954602

[12] Tang, J., Zhang, C.Y. and Luo, B. (2006) A new approach to graph seriation. Proceedings of the International Conference on Innovative Computing, Information and Control, Beijing, 30 August 2006.

[13] Ojala, T., Pietikainen, M. and Harwood, D. (1994) Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. Proceedings of the International Conference on Pattern Recognition, Jerusalem, 9-13 October 1994, 582-585.
http://dx.doi.org/10.1109/ICPR.1994.576366

[14] Ojala, T., Pietikainen, M. and Harwood, D. (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, 29, 51-59.
http://dx.doi.org/10.1016/0031-3203(95)00067-4

[15] Ojala, T., Pietikainen, M. and Maenpa, T. (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 971-987.
http://dx.doi.org/10.1109/TPAMI.2002.1017623

[16] Banerji, S., Verma, A. and Liu, C. (2011) Novel color LBP descriptors for scene and image texture classification. Proceedings of the 15th International Conference on Image Processing, Computer Vision, and Pattern Recognition, Las Vegas, 18-21 July 2011, 537-543.

[17] Liu, C. (2008) Learning the uncorrelated, independent, and discriminating color spaces for face recognition. IEEE Transactions on Information Forensics and Security, 3, 213-222.
http://dx.doi.org/10.1109/TIFS.2008.923824

[18] Liu, C. (2006) Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 725-737.
http://dx.doi.org/10.1109/TPAMI.2006.90

[19] Burrus, C., Gopinath, R. and Guo, H. (1998) Introduction to wavelets and wavelet transforms: A primer. Prentice-Hall, Englewood Cliffs.

[20] Kekre, H.B., Thepade, S.D. and Maloo, A. (2010) Query by image content using color-texture features extracted from Haar wavelet pyramid. International Journal of Computer Applications, 2, 52.

[21] Huu, Q.N., Thu, H.N.T. and Quoc, T.N. (2012) An efficient content based image retrieval method for retrieving images. International Journal of Innovative Computing Information and Control, 4, 2823-2836.

分享
Top