基于BP神经网络的延边地区渤海国遗址预测研究
Prediction of Bohai Kingdom Site in Yanbian Area Based on BP Neural Network

作者: 金石柱 , 董 振 :延边大学理学院地理系,吉林 延吉;

关键词: 遗址渤海国BP神经网络预测模型延边地区Sites Bohai Kingdom Site BP Neural Networks Predictive Model Yanbian Area

摘要:
本文选择同遗址分布有关的高程、坡度、坡向、距离河流的距离、距离村屯的距离等因素值的数据集为样本,利用BP神经网络建立延边地区渤海国遗址预测模型,并对预测结果分析。结果表明:预测模型的预测准确率达88.7%,高概率区面积占研究区域的17.6%。预测结果高概率区高程集中在海拔270~570 m高程区间,坡度集中在0˚~3˚区间,坡向集中在平地和东北方向,高概率区在河流缓冲区上,主要分布在0~1000 m缓冲区间,在道路缓冲区上主要分布在0~1500 m缓冲区间,在村屯缓冲区上主要分布在500~1500 m缓冲区间。研究结果为今后发掘新的遗址和保护现存的遗址方面提供一定的科学依据。

Abstract: In this study, we selected data sets as the sample which was related to the distribution of the site; the factors included height, gradient, slope aspect, the distance from the river, and the distance from village etc. This is based on a back-propagation (BP) neural net work to establish forecasting model to analyze the predicting results on Bohai kingdom site in Yanbian Korean Autonomous Prefecture. The results suggest that the accuracy of the prediction model gets to 88.7%, the high probability region of the whole study area is 17.6%. The elevation value of model prediction results of the high probability area concentrates in 270 - 570 meters, the slope is concentrated in 0 - 3 degree, the slope direction is concentrated in the flat ground and the Northeast. The high proba-bility region of the river buffer is distributed from 0 to 1000 meters. The site areas of road buffer are distributed within 0 - 1500 meters and the site areas of the village buffer are distributed within 500 - 1500 meters. These results provide the scientific foundations for excavation and protection of the sites.

文章引用: 金石柱 , 董 振 (2015) 基于BP神经网络的延边地区渤海国遗址预测研究。 可持续发展, 5, 142-150. doi: 10.12677/SD.2015.54019

参考文献

[1] Märker, M. and Heydari-Guran, S. (2009) Application of data-mining technologies to predict Paleolithic site locations in the Zagros Mountains of Iran. Computer Applications to Archaeology, Williamsburg, 22-26 March 2009, 1-7.

[2] 倪金生 (2009) 山东沭河上游流域考古遗址预测模型. 地理科学进展, 28, 489-492.

[3] 彭淑贞, 张伟, 陈栋栋 (2010) 汶泗流域大汶口文化考古遗址模型预测. 泰山学院学报, 32, 34-39.

[4] 乔文文, 毕硕本, 王启富, 郭忆 (2013) 郑洛地区龙山文化遗址预测模型. 测绘科学, 38, 172-181.

[5] 金石柱, 李东辉 (2013) 地理学视角下的渤海史研究. 延边大学学报(社会科学版), 46, 17-24.

[6] 李强, 候莉闽 (2003) 延边地区渤海遗存之我见. 北方文物, 4, 26-34.

[7] 吉林省延吉市地方志编撰委员会 (1994) 延吉市志. 新华出版社, 北京.

[8] 国家文物局 (1992) 中国文物地图集–吉林分册. 中国地图出版社, 北京.

[9] 王禹浪, 王宏北 (1994) 高句丽渤海古城址研究汇编. 哈尔滨出版社, 哈尔滨.

[10] 吉林省文物编撰委员会 (1983) 吉林省文物志系列丛书.

[11] 延边朝鲜族自治州民政局 (2009) 延边朝鲜族自治州行政区划图. 湖南地图出版社, 长沙.

[12] Werbos, P. (1974) Beyond regression: New tools for prediction and anal-ysis in the behavioral sciences. PhD Dissertation, Harvard University.

[13] Parker, D.B. (1985) Learning-logic. Tech-nical Report TR-47, Center for Computational Research in Economics and Management Sci, MIT.

[14] Minsky, M.L. and Papert, S. (1969) Perceptron. MIT Press, Cambridge.

[15] Hecht-Nielsen, R. (1989) Theory of the back-propagation neural networks. Proceedings of the International Conference on Neural Networks, 593-611.
http://dx.doi.org/10.1109/IJCNN.1989.118638

[16] 鲁鹏, 杨瑞霞, 田燕 (2008) GIS考古研究综述与前景展望. 中原文物, 2, 104-108.

[17] 高立兵 (1997) 时空解释新手段——欧美考古GIS研究的历史现状和未来. 考古, 7, 89-95.

[18] Hormik, K. (1991) Approximation capability of multi-layer feed forward networks. Neural Networks, 4, 241-257.
http://dx.doi.org/10.1016/0893-6080(91)90009-T

[19] Willey, G.R. (1953) Prehistoric settlement in the Virúalley, Peru. Bureau of American Ethnology Bulletin, 155.

分享
Top