镁处理对FH40级船板钢中夹杂物及组织特征影响
Effect of Mg Treatment on Characteristics of Inclusions and Microstructure in FH40 Ship-Building Steel

作者: 吕 铭 , 李小兵 , 闵 义 , 刘承军 , 姜茂发 :东北大学多金属共生矿生态化冶金教育部重点实验室,辽宁 沈阳;

关键词: 船板钢镁处理夹杂物针状铁素体粒状贝氏体Ship-Building Steel Magnesium Treatment Inclusions Acicular Ferrite Granular Bainite

摘要:
采用SEM-EDS研究了Mg处理钢中典型夹杂物特征,采用金相显微镜研究了Mg处理钢铸态和轧态显微组织特征。研究结果表明,FH40级船板钢经镁处理后,钢中夹杂物由Al2O3 + MnS逐渐变质成MgO•Al2O3 + MnS,随着镁处理强度的增加,变质趋于完全。未经镁处理FH40级船板钢铸态组织以“块状铁素体 + 珠光体”混合组织为主,镁处理后,铸态组织逐渐演变为“块状铁素体 + 珠光体 + 针状铁素体”的混合组织,且随镁处理强度的增加,针状铁素体数量明显升高。未经镁处理FH40级船板钢轧态组织以“铁素体 + 少量珠光体”混合组织为主,随着镁处理强度的增加,块状铁素体数量明显降低,铁素体条尺寸减少,且分布更为均匀,出现了大量针状铁素体和粒状贝氏体组织。

Abstract: The chemical composition and morphology of particles were investigated with SEM-EDS; and the characteristics of casted and rolled microstructure were characterized with OM methods. The re-sults show that, the typical inclusions are turned to be Al-Mg-O + MnS and MgO•Al2O3 + MnS from Al2O3 + MnS after adding magnesium content from 8 × 10−6 to 26 × 10−6. The main microstructures of FH40 ship-building casted steel are pearlite and polygon ferrite. However, after adding trace magnesium, the casted microstructure evolved into pearlite, ferrite and acicular ferrite, and with increasing the magnesium content, the number of acicular ferrite is obviously increased. Meanwhile, the main microstructures of FH40 ship-building rolled steel are polygon ferrite and a few pearlite. Moreover, with increasing the magnesium content, the number of polygon ferrite decreases, and the ferrite grains are refined and the distribution of ferrite is even more uniform. Further, there is large quantity of acicular ferrite and granular bainite with magnesium addition.

文章引用: 吕 铭 , 李小兵 , 闵 义 , 刘承军 , 姜茂发 (2015) 镁处理对FH40级船板钢中夹杂物及组织特征影响。 冶金工程, 2, 169-176. doi: 10.12677/MEng.2015.24024

参考文献

[1] Barbaro, F.J., Krauklis, P. and Easterling, K.E. (1989) Formation of Acicular Ferrite at Oxide Particles in Steels. Mate-rials Science and Technology, 5, 1057-1068.
http://dx.doi.org/10.1179/mst.1989.5.11.1057

[2] Mizoguchi, S. and Takamura, J. (1990) Control of Oxides as Inoculants Metallurgy of Oxides in Steel Process. Sixth International Iron and Steel Congress, ISIJ, Nagoya, 2331-2342.

[3] Lee, J.L. and Pan, Y.T. (1991) Microstructure and Toughness of the Simulated HAZ in Ti and Al Killed Steels. Materials science & Engineering A, Structural Materials: Properties, Microstructure and Processing A, 136, 109-118.

[4] Tomita, Y., Saito, N., Tsuzuki, T., et al. (1994) Improvement in HAZ Toughness of Steel by TiN-MnS Addition. ISIJ International, 34, 829-835.
http://dx.doi.org/10.2355/isijinternational.34.829

[5] Madariaga, I., Romero, J.L. and Gutierrez, I. (1998) Upper acicular Ferrite Formation in a Medium-Carbon Microalloyed Steel by Isothermal Transformation: Nucleation En-hancement by CuS. Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science A, 29, 100-1015.

[6] Lee, T.K., Kim, H.J., Kang, B.Y., et al. (2000) Effect of Inclusion Size on Nucleation of Acicular Ferrite in Welds. ISIJ International, 40, 1260-1268.
http://dx.doi.org/10.2355/isijinternational.40.1260

[7] Capdevila, C., Caballero, F.G. and Careia De Andres, C. (2001) Modelling of Kinetics of Isothermal Idiomorphic Ferrite Formation in a Medium-Carbon Vanadium-Titanium Microalloyed Steel. Metallurgical and Materials Transactions A, 32, 1591-1597.
http://dx.doi.org/10.1007/s11661-001-0137-3

[8] Kojima, A., Kiyose, A., Uemori, R., et al. (2004) Super high HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles. Nippon Steel Technical Research, 90, 2-6.

[9] Grong, Ø., Kolbeinsen, L., Eijk, C.V.D., et al. (2006) Microstructure Control of Steels through Dispersoid Metallurgy Using Novel Grain Refining Alloys. ISIJ International, 46, 824-831.
http://dx.doi.org/10.2355/isijinternational.46.824

[10] Tang, Z.H. and Waldo, S. (2008) The Role of Molybdenum Additions and Prior Deformation on Acicular Ferrite Formation in Microalloyed Nb-Ti Low-Carbon Line-Pipe Steels. Materials Characterization, 59, 717-728.
http://dx.doi.org/10.1016/j.matchar.2007.06.001

[11] Eijk, C.V.D., Grong, Ø., Haakonsen, F., et al. (2009) Progress in the Development and Use of Grain Refiner Based on Cerium Sulfide or Titanium Compound for Carbon Steel. ISIJ International, 49, 1046-1050.
http://dx.doi.org/10.2355/isijinternational.49.1046

[12] Sha, Q.Y. and Su, Z.Q. (2009) Grain Growth Behavior of Coarse-Grained Austenite in a Nb-V-Ti Microalloyed Steel. Materials Science and Engineering A, 523, 77-84.
http://dx.doi.org/10.1016/j.msea.2009.05.037

[13] Yamada, T., Terasaki, H. and Komizo Y. (2009) Relation be-tween Inclusion Surface and Acicular Ferrite in Low Carbon Low Alloy Steel Weld. ISIJ International, 49, 1059-1062.
http://dx.doi.org/10.2355/isijinternational.49.1059

[14] Shu, W., Wang, X.M., Li, S.R., et al. (2010) The Oxide Inclusion and Heat-Affected-Zone Toughness of Low Carbon Steel. Materials Science Forum, 654-656, 358-361.
http://dx.doi.org/10.4028/www.scientific.net/MSF.654-656.358

[15] Kato, T., Sato, S., Ohta, H., et al. (2011) Effect of Ca Addition on Formation Behavior of TiN Particles and HAZ Toughness in Large Heat Input Welding. Kobe Steel Engineering Report, 61, 32-35.

[16] 刘中柱, 桑原守. 氧化物冶金技术的最新进展及其实践[J]. 炼钢, 2007, 23(4): 1-6.

[17] Wen, B., Song, B., Pan, N., et al. (2011) Effect of SiMg Alloy on Inclusions and Microstructures of 16Mn Steel. Ironmaking and Steelmaking, 38, 577-683.
http://dx.doi.org/10.1179/1743281211Y.0000000010

[18] Zhu, K. and Yang, Z.G. (2011) Effect of Mg Addition on the Ferrite Grain Boundaries Misorientation in HAZ of Low Carbon Steels. Journal of Materials Science Technology, 27, 252-256.
http://dx.doi.org/10.1016/S1005-0302(11)60058-3

[19] 李尚兵, 王谦. 铝镁合金脱氧热力学分析与实验研究[J]. 铁合金, 2007(2): 23-27.

[20] 李贵阳, 李太全. 含镁夹杂物对一种管线钢固体相变的影响[J]. 钢铁, 2010, 45(7): 76-80.

[21] 崔忠圻, 谭耀春. 金属学[M]. 北京: 机械工业出版社, 2008: 260.

[22] 许荣昌. 船板钢的发展与生产技术[J]. 莱钢科技, 2007(2): 5-9.

[23] 戴起勋. 金属组织控制原理[M]. 北京: 化学工业出版社, 2008.

[24] 徐洪庆. F40高强度船板钢的TMCP工艺及低温韧性研究[D]: [硕士学位论文]. 济南: 山东大学, 2009.

分享
Top