散焦图像的维纳滤波复原及振铃抑制
Defocused Image Restoration with Wiener Filter and Ringing Suppression

作者: 唐满芳 , 胡宗福 :同济大学电子与信息工程学院,上海;

关键词: 图像复原维纳滤波点扩散函数振铃边缘提取Image Restoration Wiener Filter PSF Ringing Edge Detection

摘要:
图像复原是数字图像处理的重要研究内容。基于频域的维纳滤波实现图像复原,并针对复原过程中伴随的振铃效应,采用扩展边缘的方法做了消除振铃预处理。然后进一步分析点扩散函数半径、图像梯度对振铃样式的影响,并由此建立边界振铃样式数据库R。并结合轮廓提取以及边缘膨胀法,得到振铃影响域内某点到轮廓的距离,从而调用对应库里的振铃样式做振铃修正。最后基于Matlab用简单轮廓图形验证该振铃抵消方法的有效性,从而将振铃幅度控制在±2之内,极大程度的恢复了原始高清图像。

Abstract: Image restoration is a key research point of digital image processing. Wiener filter is used for basic image restoration, and boundary extension is a good method of ringing suppression preprocessing. Further analysis is made to find the relation between ringing pattern and precondition, including PSF radius and the gradient of outline. According to the relation, we build a 2D database matrix R to store the outline ringing pattern information. Combined with edge detection and image dilation, we can invoke the pattern database to suppress the ringing in a certain pre-condition and distance. Finally we verify the effectiveness of method with a simple outline example in Matlab, thus controlling the amplitude of ringing within ±2, and then the image information is restored as much as impossible.

文章引用: 唐满芳 , 胡宗福 (2015) 散焦图像的维纳滤波复原及振铃抑制。 图像与信号处理, 4, 87-93. doi: 10.12677/JISP.2015.44010

参考文献

[1] 王永攀, 冯华君, 徐之海, 等 (2009) 模糊核估计不准确下的振铃效应修正. 光电工程, 8, 105-111.

[2] 左博新, 明德烈, 田金文 (2010) 盲复原图像振铃效应评价. 中国图象图形学报, 8, 1244-1253.

[3] 李金宗, 黄建明, 陈凤, 等 (2008) 超分辨率处理中振铃现象的分析与抑制. 系统工程与电子技术, 6, 664-668.

[4] 马子扬, 刘学慧, 吴恩华 (2014) 图像反卷积边界效应的快速抑制算法. 计算机辅助设计与图形学学报, 7, 1051- 1059.

[5] 赵剡, 李东兴, 许东 (2006) 抑制复原图像振铃波纹的频域循环边界算法. 北京航空航天大学学报, 11, 1290- 1294.

[6] 李俊山, 张士杰, 杨亚威, 等 (2014) 基于边缘分离的去振铃复原. 光学精密工程, 3, 797-805.

[7] 吴玲达, 郝红星 (2012) 一种图像去模糊正则化恢复算法参数确定方法. 国防科技大学学报, 4, 79-84.

[8] 唐述 (2013) 基于正则化的图像去模糊方法研究. 博士论文, 重庆大学, 重庆.

[9] 张益昕, 王顺, 张旭苹 (2011) 大尺度三维视觉测量中的离焦模糊图像恢复. 仪器仪表学报, 12, 2748-2753.

[10] 徐宗琦, 高璐 (2007) 一种盲复原图像振铃效应的后处理与质量评价方法. 计算机应用, 4, 986-988.

[11] Shen, C.T., Hwang, W.L. and Pei, S.C. (2012) Spatially-varying out-of-focus image deblurring with L1-2 optimization and a guided blur map. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, 25-30 March 2012, 1069-1072.
http://dx.doi.org /10.1109/ICASSP.2012.6288071

[12] Aghdasi, F. and Ward, R.K. (1996) Reduction of boundary artifacts in image restoration. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 5, 611-618.
http://dx.doi.org /10.1109/83.491337

[13] Lagendijk, R.L., Biemond, J. and Boekee, D.E. (1988) Regularized iterative image restoration with ringing reduction. IEEE Transactions on Acoustics Speech & Signal Processing, 36, 1874-1888.
http://dx.doi.org /10.1109/29.9032

[14] Tekalp, A.M. and Sezan, M.I. (1990) Quantitative analysis of artifacts in linear space-invariant image restoration. Multidimensional Systems & Signal Processing, 1, 143-177.
http://dx.doi.org /10.1007/BF01816547

分享
Top