分数阶非线性SchrO¨dinger方程解的存在性
The Existence of Global Solution of Fractional Nonlinear SchrO¨dinger Equation

作者: 金玲玉 , 蓝丽红 :华南农业大学数学与信息学院,广东 广州;

关键词: 分数阶非线性SchrO">¨dinger方程光滑解先验估计Fractional Nonlinear SchrO">¨dinger Equation Global Solution Priori Estimate

摘要:
本文考虑具有周期边界条件的分数阶非线性Schrödinger方程的初值问题,通过引入复合函数的范数估计等引理,并采用先验估计方法得到问题解的存在性。

Abstract: In this paper, we deal with the global smooth solution for the fractional nonlinear Schrödinger equation with period boundary value. Through some preliminary lemmas of the estimates for composite functions, taking the prior estimate method, the existence of the solution is obtained.

文章引用: 金玲玉 , 蓝丽红 (2015) 分数阶非线性SchrO¨dinger方程解的存在性。 动力系统与控制, 4, 85-92. doi: 10.12677/DSC.2015.44011

参考文献

[1] Feynman, R.P. and Hibbs, A.R. (1965) Quantum mechanics and path integrals. McGraw-Hill, New York.

[2] Laskin, N. (2002) Fractional Schrödinger equation. Physical Review E, 66, Article ID: 056108.
http://dx.doi.org/10.1103/physreve.66.056108

[3] 郭柏灵, 蒲学科, 黄凤辉 (2011) 分数阶偏微分方程及其数值解. 科技出版社, 北京, 99-120.

[4] 郭柏灵 (1989) 非线性边值问题的一些解法. 汪礼礽, 译, 中山大学出版社, 广州, 335-340.

[5] 郭柏灵 (1995) 非线性演化方程. 上海科学技术出版社, 上海, 30-96.

[6] Guo, B.L., Han, Y.Q. and Xin, J. (2008) Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Applied Mathematics and Computation, 204, 468-477.
http://dx.doi.org/10.1016/j.amc.2008.07.003

[7] 宋道金, 赵文玲 (1995) 多个函数乘积的高阶导数通式. 淄博师专学报, 4, 10-11.

分享
Top