张量投票在目标跟踪中的应用
Application of Tensor Voting in Object Tracking

作者: 邵晓芳 , 李大龙 :海军航空工程学院青岛校区,山东 青岛 ;

关键词: 目标跟踪轨迹校正目标检测Object Tracking Track Alignment Object Detection

摘要: 目标跟踪就是在视频序列的每幅图像中找到所感兴趣的运动目标的位置,建立起运动目标在各幅图像中的联系。在分类总结相关工作的基础上,介绍了张量投票方法在目标跟踪中的应用,给出了算法流程和实验结果并进行了分析和展望。

Abstract: Object tracking is a process to locate an interested object in a series of image, so as to reconstruct the moving object’s track. This paper presents a summary of related works and introduces how to apply the tensor voting method in object tacking. The algorithm’s flowchart and typical experimental result are demonstrated. At last, we analyze the characteristics of the algorithm and suggest some future directions.

文章引用: 邵晓芳 , 李大龙 (2015) 张量投票在目标跟踪中的应用。 计算机科学与应用, 5, 278-284. doi: 10.12677/CSA.2015.58036

参考文献

[1] Yilmaz, A., Javed, O. and Shah, M. (2006) Object tracking: A survey. ACM Computing Surveys, 38, 1-45.
http://dx.doi.org/10.1145/1177352.1177355

[2] Salari, V. and Sethi, I.K. (1990) Feature point correspondence in the presence of occlusion. IEEE Transaction Pattern Analysis Machine Intelligence, 12, 87-91.
http://dx.doi.org/10.1109/34.41387

[3] Veenman, C., Reinders, M. and Backer, E. (2001) Resolving motion correspondence for densely moving points. IEEE Transaction Pattern Analysis Machine Intelligence, 23, 54-72.
http://dx.doi.org/10.1109/34.899946

[4] Lochner, M. and Trick, L. (2014) Multiple-object tracking while driving: The multiple-vehicle tracking task. Attention. Perception, & Psychophysics, 76, 2326-2345.
http://dx.doi.org/10.3758/s13414-014-0694-3

[5] Meyerhoff, H., Papenmeier, F. and Huff, M. (2013) Ob-ject-based integration of motion information during attentive tracking. Perception, 42, 119-121.
http://dx.doi.org/10.1068/p7273

[6] Chevalier, F., Dragicevic, P. and Franconeri, S. (2014) The not-so-staggering effect of staggered animated transitions on visual tracking. IEEE Transactions on Visualization and Computer Graphics, 20, 2241-2250.
http://dx.doi.org/10.1109/TVCG.2014.2346424

[7] Feria, C. (2013) Speed has an effect on multiple-object tracking independently of the number of close encounters between targets and distractors. Attention, Perception, & Psychophysics, 75, 53-67.
http://dx.doi.org/10.3758/s13414-012-0369-x

[8] 高琳, 唐鹏, 盛鹏, 等 (2010) 复杂场景下基于条件随机场的视觉目标跟踪. 光学学报, 6, 1721-1728.

[9] 郭晓松, 李奕芃, 郭君斌 (2009) 贝叶斯目标跟踪方法的研究. 计算机工程, 12, 138-141.

[10] Comaniciu, D., Ramesh, V. and Andmeer, P. (2003) Kernel-based object tracking. IEEE Transaction Pattern Analysis Machine Intelligence, 25, 564-575.
http://dx.doi.org/10.1109/TPAMI.2003.1195991

[11] Shi, J. and Tomasi, C. (1994) Good features to track. Pro-ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, 21-23 Jun 1994, 593-600.

[12] Tao, H., Sawhney, H. and Kumar, R. (2002) Object tracking with Bayesian estimation of dynamic layer representations. IEEE Transactions on Pattern Analysis Machine Intelligence, 24, 75-89.
http://dx.doi.org/10.1109/34.982885

[13] Lukavsky, J. (2013) Eye movements in repeated multiple object tracking. Journal of Vision, 13, 1-16.
http://dx.doi.org/10.1167/13.7.9

[14] Avidan, S. (2001) Support vector tracking. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, 8-14 December 2001, 184-191.
http://dx.doi.org/10.1109/cvpr.2001.990474

[15] Isard, M. and Blake, A. (1998) Condensation—Conditional density propagation for visual tracking. International Journal of Computer Vision, 29, 5-28.
http://dx.doi.org/10.1023/A:1008078328650

[16] Bertalmio, M., Sapiro, G. and Randall, G. (2000) Morphing ac-tive contours. IEEE Transactions on Pattern Analysis Machine Intelligence, 22, 733-737.
http://dx.doi.org/10.1109/34.865191

[17] Ronfard, R. (1994) Region based strategies for active contour models. International Journal of Computer Vision, 13, 229-251.
http://dx.doi.org/10.1007/BF01427153

[18] Gardner, W.F. and Lawton, D.T. (1996) Interactive model-based vehicle tracking. IEEE Transactions on Pattern Analysis Machine Intelligence, 18, 1115-1121.
http://dx.doi.org/10.1109/34.544082

[19] Rowley, H., Baluja, S. and kanade, T. (2014) Tracking by location and features: Object correspondence across spatiotemporal discontinuities during multiple object tracking. Journal of Experimental Psychology: Human Perception and Performance, 40, 159-171.
http://dx.doi.org/10.1037/a0033117

[20] Sato, K. and Aggarwal, J. (2004) Temporal spatio-velocity transform and its application to tracking and interaction. Computation Vision Image Understanding, 96, 100-128.
http://dx.doi.org/10.1016/j.cviu.2004.02.003

[21] Kang, J., Cohen, I. and Medioni, G. (2004) Object reacquisi-tion using geometric invariant appearance model. Proceedings of the International Conference on Pattern Recognition, Cambridge, 23-26 August 2004, 759-762.
http://dx.doi.org/10.1109/ICPR.2004.1333883

[22] Kornprobst, P. and Medioni, G. (2000) A 2D+t tensor voting based approach for tracking. Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, 3-8 September 2000, 1092-1095.

[23] Kornprobst, P., Deriche, R. and Aubert, G. (1999) Image sequence analysis via partial differential equations. Journal of Mathematical Imaging and Vision, 11, 5-26.
http://dx.doi.org/10.1023/A:1008318126505

[24] 张宇, 韩振军, 焦建彬 (2010) 一种基于综合特征评估的运动目标跟踪算法. 中国科学技术大学学报, 5, 491- 495.
http://dx.doi.org/10.1109/ICPR.2000.903736

分享
Top