呫吨酮类化合物的合成及生物活性研究进展
The Research Progress about Synthesis and Biological Activities of Xanthones

作者: 郝晓盼 , 林 军 , 严胜骄 :云南大学化学科学与工程学院教育部自然资源药物化学重点实验室,云南 昆明;

关键词: 呫吨酮合成生物活性Xanthones Synthesis Biological Activity

摘要:
呫吨酮类化合物具有消炎、镇痛、抗病毒、抗肿瘤等广谱的生物活性。通过对呫吨酮骨架结构进行修饰是合成生物活性药物的重要方法。呫吨酮骨架成为合成具有生物活性分子的重要砌块。本文对呫吨酮母体骨架的合成方法及呫吨酮类化合物的活性研究进行了简要介绍。合成方法包括金属催化及生物合成法等,并对近年来国内外对呫吨酮类化合物生物活性的研究进行简单介绍。

Abstract: Xanthones have been found to possess wide biological activities including anti-inflammatory, anal-gesic, antivirus, antitumor etc. It is an important way to synthesize biologically active drugs by modification of the structure of xanthones. The skeleton structure of xanthone has been severed as the building blocks to synthesis of bioactive molecules. In this paper, the synthesis methods and the active research of xanthones were summarized in brief. The synthesis methods included metal catalyzed syntheses, biosynthesis and so on. At the same time, the paper briefly introduces the re-search of biological activity of xanthones, which has been reported at home and abroad for many years.

文章引用: 郝晓盼 , 林 军 , 严胜骄 (2015) 呫吨酮类化合物的合成及生物活性研究进展。 有机化学研究, 3, 122-137. doi: 10.12677/JOCR.2015.33017

参考文献

[1] Ryu, H.W., Curtis-Long, M.J., Jung, S., Cho, J.K., Ryu, Y.B., Lee, W.S. and Park, K.H. (2010) Xanthones with neuramini-dase inhibitory activity from the seedcases of Garcinia mangostana. Bioorganic & Medicinal Chemistry, 18, 6258-6244.
http://dx.doi.org/10.1016/j.bmc.2010.07.033

[2] Carr, A.A., Grunwell, J.F., Sill, A.D., Meyer, D.R., Sweet, F.W., Scheve, B.J., Grisar, J.M., Fleming, R.W. and Mayer, G.D. (1976) Bis-basic-substituted polycyclic aromatic compounds. A new class of antiviral agents. 7.Bisalkamine esters of 9-oxoxanthene-2,7-dicarboxylic acid, 3,6-bis-basic ethers of xan-then-9-one, and 2,7-bis(aminoacyl)xanthen- 9-ones, xanthenes, and thioxanthenes. Journal of Medicinal Chemistry, 19, 1142-1148.

[3] Dodean, R.A., Kelly, J.X., Peyton, D., Gard, G.L., Riscoe, M.K. and Winter, R.W. (2008) Synthesis and heme-binding correlation with antimalarial activity of 3,6-bis-(ω-N,N-diethylaminoamyloxy)-4,5-difluoroxanthone. Bioorganic & Medicinal Chemistry, 16, 1174-1183.

[4] Kolokythas, G., Kostakis, I.K., Pouli, N., Marakos, P., Skaltsounis, A.L. and Pratsinis, H. (2002) Design and synthesis of some new pyranoxanthenone amino derivatives with cytotoxic activity. Bioorganic & Medicinal Chemistry Letters, 12, 1443-1446.

[5] Fosse, R. (1906) On xanthone and xanthyhydrol. Competes Rendus Hebdomadaires des seances de l’Academie des sciences, 143, 749-751.

[6] Carpenter, I., Locksley, H.D. and Scheinmann, F. (1969) Xanthones, in higher plants: biogenetic proposals and a chemotaxonomic survey. Phytochemistry, 8, 2013-2025.
http://dx.doi.org/10.1016/s0031-9422(00)88089-9

[7] Pouli, N. and Marakos, P., (2009) Fused xanthone derivatives as antiproliferative agents. Anti-Cancer Agents in Medicinal Chemistry, 9, 77-98.

[8] Franklin, G., Conceicao, L.F., Kombrink, E. and Dias, A.C. (2009) Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry, 70, 60-68.

[9] Tanaka, N., Kashiwada, Y., Kim, S.Y., Sekiya, M., Ikeshiro, Y. and Takaishi, Y. (2009) Xanthones from hypericum chinense and their cytotoxicity evaluation. Phytochemistry, 70, 1456-1461.
http://dx.doi.org/10.1016/j.phytochem.2009.08.015

[10] Ryu, H.W., Curtis-Long, M.J., Jung, S., Jin, Y.M., Cho, J.K., Ryu, Y.B., Lee, W.S. and Park, K.H. (2010) Xanthones with neuraminidase inhibitory activity from the seedcases of Garcinia mangostana. Bioorganic & Medicinal Chemistry, 18, 6258-6244.

[11] Carr, A.A., Grunwell, J.F., Sill, A.D., Meyer, D.R., Sweet, F.W., Scheve, B.J., Grisar, J.M., Fleming, R.W. and Mayer, G.D. (1976) Bis-basic-substituted polycyclic aromatic compounds. A new class of antiviral agents. 7. Bisalkamine esters of 9-oxoxanthene-2,7-dicarboxylic acid, 3,6-bis-basic ethers of xanthen-9-one, and 2,7-bis(aminoacyl)xanthen-9- ones, -xanthenes, and -thioxanthenes. Journal of Medicinal Chemistry, 19, 1142-1148.

[12] Tim, W., Stefan, B. and Kye-simeon, M. (2015) Xanthone dimers: A compound family which is both common and privileged. Natural Product Reports, 32, 6-28.

[13] 杨学东, 徐丽珍, 杨世林 (2000) 远志属植物中酮类成分及其药理研究进展. 天然产物开发与应用, 5, 88-93.

[14] Peres, V., Nagem, T.J. and Oliveira, F.F. (2000) Tetraoxygenated naturally occurring xanthones. Phytochemistry, 55, 683-710.
http://dx.doi.org/10.1016/S0031-9422(00)00303-4

[15] 赵岩, 刘金平 (2010) 莽吉柿果皮中几种氧杂蒽酮的分离与鉴定. 吉林农业大学学报, 5, 513-517.

[16] 蔡幼清 (1998) 云南山竹子中的抗疟成分(口山)酮. Planta Medica, 64, 64-70.

[17] Cui, H.Y., Liu, W.Y., Lei, W. and Feng, F. (2011) Xanthone compounds isolated from Garcinia hanburyi and related analytical methods. Pharmaceutical Sciences, 35, 337-344.

[18] Mao, S.S., Luo, C.T., Zheng, H.H., Liu, J. and Chen, H. (2014) Xanthones from Swertia mussotii plant as nitrite-scavenging agents. Natural Products Chemistry & Research, 2, 126\1-126\5.

[19] Noureldin, N.A., Zhao, D.Y. and Lee, D.G. (1997) Heterogenous permanganate oxidations.7. The oxidation of aliphatic side chains. The Journal of Organic Chemistry, 62, 8767-8772.

[20] Kishore, D. and Rodrigues, A.E. (2009) Liquid phase selective oxidation of diphenylmethane to benzophenone over ternary hydrotalcites with tert-butylhydroperoxidemoreless. Catalysis Communications, 10, 1212-1215.

[21] Kotani, M., Koike, T., Yamaguchi, K. and Mizuno, N. (2006) Ruthenium hydroxide on magnetically separable heterogeneous catalyst for liquid-phase oxidation and reduction. Green Chemistry, 8, 735-741.
http://dx.doi.org/10.1039/b603204d

[22] Shaabani, A. and Rahmati, A. (2008) Aerobic oxidation of alkylarenes using a combination of N-hydroxyphthalimide and recyclable cobalt(II) tetrasulfophthalocyanine supported on silica. Catalysis Communications, 9, 1692-1697.

[23] Holleman, A.F. (1941) Xanthone. Organic Syntheses, 1, 552-554.

[24] 胡利红, 覃章兰 (2002) 呫吨酮类化合物的合成及生理活性. 合成化学, 4, 285-291.

[25] 洪镰裕, 赵宏伟, 宋静 (2006) 氧杂蒽酮合成的研究进展. 化学试剂, 10, 632-634.

[26] 王纪元, 孙学军, 王明清 (2009) Ullmann法合成氧杂蒽酮的研究. 化学世界, 7, 427-429.

[27] Gobbi, S., Rampa, A., Bisi, A., Belluti, F., Valenti, P., Caputo, A., Zampiron, A. and Carrara, M. (2002) Synthesis and antitumor activity of new derivatives of xanthen-9-one-4-acetic acid. Journal of Medicinal Chemistry, 45, 4931-4939.

[28] Hintermann, L., Masuo, R. and Suzuki, K. (2008) Solvent-controlled leaving-group selectivity in aromatic nucleophilic substitution. Organic Letters, 10, 4859-4862.

[29] Barbero, N., Martin, R.S. and Dominguez, E. (2009) A con-venient approach to the xanthone scaffold by an aqueous aromatic substitution of bromo- and iodoarenes. Tetrahedron, 65, 5729-5732.
http://dx.doi.org/10.1016/j.tet.2009.05.021

[30] Grover, P.K., Shah, G.D. and Shah, R.D. (1955) Xanthones. IV. A New synthesis of hydroxyxanthones and hydroxybenzophenones. Journal of the Chemical Society, 3982-3985.

[31] 覃江克, 韩留玉, 兰文丽, 唐煌, 苏桂发, 戴支凯, 徐庆 (2009) 呋喃并呫吨酮衍生物的合成与生物活性研究. 化学学报, 22, 2597-2606.

[32] Jaysukhlal, R.M., Necille, V.F. and Vidyullata, C.W. (1996) Synthesis, characterization and redox properties of ruthenium(II) dithiocarbonato complexes having 2,2’-bipyridine coligands. Journal of the Chemical Society, 108, 379-398.

[33] Jian, Z., Dawei, Y., Marino, A.C. and Richard, C.L. (2007) An aryl to imidoyl palladium migration process involving intramolecular C-H activation. Journal of the American Chemical Society, 129, 5288-5295.

[34] Zhang, H., Shi, R.Y., Gan, P., Liu, C., Ding, A.X., Wang, Q.Y. and Lei, A.W. (2012) Palladium-catalyzed oxidative double C-H functiona-lization/carbonylation for the synthesis of xanthones. Angewandte Chemie International Edition, 51, 5204-5207.
http://dx.doi.org/10.1002/anie.201201050

[35] Xu, Y.M., Zhou, J., Zhang, C.C., Chen, K., Zhang, T., Du, Z.T. and Te-trahedron, L. (2014) Synthesis of xanthones through the palladium-catalyzed carbonylation/C-H activation sequence. Tetra-hedron Letters, 55, 6432-6434.
http://dx.doi.org/10.1016/j.tetlet.2014.09.119

[36] 李海燕(2010)铁催化的氧杂蒽酮和氮杂蒽衍生物的合成反应研究. 硕士论文, 华东师范大学, 上海.

[37] Sebastian, W., Dirk, L. and Armido, S. (2013) Cross dehydrogenative coupling via base-promoted homolytic aromatic substitution (BHAS): Synthesis of fluorenones and xanthones. Organic Letters, 15, 928-931.

[38] Menéndez, C.A., Nador, F., Radivoy, G. and Gerbino, D.C. (2014) One-step synthesis of xanthones catalyzed by a highly efficient copper-based magnetically recoverable nanocatalyst. Organic Letters, 16, 2846-2849.

[39] Okuma, K., Nojima, A., Matsunaga, N. and Shioji, K. (2009) Reaction of benzyne with salicylaldehydes: General synthesis of xanthenes, xanthones, and xanthols. Organic Letters, 11, 169-171.
http://dx.doi.org/10.1021/ol802597x

[40] Xie, F.C., Chen, H. and Hu, Y.H. (2010) Efficient construction of 3C-xanthone-linked 3C-chromone scaffold by novel double michael additions and cyclizations. Organic Letters, 12, 3086-3089.

[41] Chandra, K.G., Samita, B. and Amarendra, P. (1997) Unusual con-densation of 2-(2-dimethylaminovinyl)-1-benzopyran- 4-one with dimethyl acetylenedicarboxylate: Formation of 2,3-bis(methoxycarbonyl)xanthen-9-one. Journal of the Chemical Society, Perkin Transactions, 15, 2167-2168.

[42] Roy, M.L., Yue, T.Y. and Cheung, K.K. (1992) A new xanthone synthesis from the Diels-Alder reaction between 2-vinylchromen-4-ones and cyclopentanone enamine. Chemical Communications, 18, 1310-1311.

[43] Wade Jr., L.G., Acker, K.J., Earl, R.A. and Osteryoung, R.A. (1979) Cyclodehydration reactions using molten sodium tetrachloroaluminate. Journal of Organic Chemistry, 44, 3724-3725.

[44] Ahmed, S.A., Bardshiri, E. and Simpson, T.J. (1987) A convenient synthesis of isotopically labeled anthraquinones, chrysophanol, islandicin, and emodin. Incorporation of [methyl-2H3]chrysophanol into tajixanthone in Aspergillus variecolor. Journal of the Chemical Society, Chemical Communications, 12, 883-884.

[45] Sandifer, R.M., Bhattacharys, A.K. and Harris, T.M. (1981) Acylation of multiple anions of poly-beta-ketones by hydroxy- and alkoxybenzoates. Cyclization of the resultant tetraketones to benzophenones and xanthones. Organic Chemistry, 46, 2260-2267.

[46] Sanchez, J.F., Entwistle, R., Hung, J.H., Yaegashi, J., Jain, S., Chiang, Y.M., Wang, C.C. and Oakley, B.R. (2011) Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans. Journal of the Chemical Society, 133, 4010-4017.

[47] Librowski, T., Czarnecki, R., Czekaj, T. and Marona, H. (2005) New xanthone derivatives as potent anti-inflammatory agents. Medicina (Kaunas), 41, 54-58.

[48] 梁巧丽, 高宏成 (1999) 金丝桃素的研究进展. 中草药, 9, 705-708.

[49] 傅芃, 张川, 张卫东, 柳润辉, 徐希科 (2005) 呫吨酮类化合物的药理活性研究进展. 药学实践杂志, 1, 6-12.

[50] Bumrungpert, A., Kalpravidh, R.W., Chuang, C.C., Overman, A., Martinez, K., Kennedy, A. and Mcintosh, M.K. (2010) Xanthones from mangosteen inhibit inflammation in human macrophages and in human adipocytes exposed to macrophage-conditioned media. Journal of Nutrition, 140, 842-847.
http://dx.doi.org/10.3945/jn.109.120022

[51] Sukma, M., Tohda, M., Suksamran, S. and Tantisira, B. (2011) γ-Mangostin increases serotonin2A/2C, muscarinic, histamine and bradykinin receptor mRNA expression. Journal of Eth-nopharmacology, 135, 450-454.

[52] Gopalakrishnan, G., Banumathi, B. and Suresh, G. (1997) Evaluation of the antifungal activity of natural xanthones from Garcinia mangostana and their synthetic derivatives. Journal of Natural Products, 60, 519-524.

[53] Lee, B.W., Lee, J.H., Lee, S.T., Lee, H.S., Lee, W.S., Jeong, T.S. and Park, K.H. (2005) Antioxidant and cy-totoxic activity of anthones from Cudrania tricuspidata. Bioorganic & Medicinal Chemistry Letters, 15, 5548-5552.

[54] Auranwiwat, C., Trisuwan, K., Saiai, A., Pyne Stephen, G. and Ritthiwigrom, T. (2014) Antibacterial te-traoxygenated xanthones from the immature fruits of Garcinia cowa. Fitoterapia, 98, 179-183.
http://dx.doi.org/10.1016/j.fitote.2014.08.003

[55] Koh, J.J., Lin, S., Aung, T.T., Lim, F., Zou, H.X., Bai, Y., Li, J.G., Lin, H.F., Pang, L.M. and Koh, W.L. (2015) Amino acid modified xanthone derivatives: Novel, highly promising mem-brane-active antimicrobials for multidrug-resistant gram-positive bacterial infections. Journal of Medicinal Chemistry, 58, 739-752.
http://dx.doi.org/10.1021/jm501285x

[56] Rewcastle, G.W., Atwell, G.J., Li, Z.A., Baguley, B.C. and Denny, W.A. (1991) Potential antitumor agents. 61. Stucture-activity relationships for in vivo colon 38 activity among disubstituted 9-oxo-9H-xanthene-4-acetic acids. Journal of Medicinal Chemistry, 34, 217-222.

[57] Sato, H., Dan, T., Onuma, E., Tanaka, H. and Koga, H. (1990) Studies on uricosuric diuretics. I. Syntheses and activities of (xanthonyloxy)acetic acids and dihy-drofuroxanthone-2-carboxylic acids. Chemical & Pharmaceutical Bulletin, 38, 1266-1277.

[58] Qin, J., Lan, W., Liu, Z., Huang, J., Tang, H. and Wang, H. (2013) Synthesis and biological evaluation of 1, 3-dihy- droxyxanthone mannich base de-rivatives as anticholinesterase agents. Chemistry Central, 7, 78.

[59] 孙洪发, 胡伯林, 樊淑芬, 丁经业 (1987) 花锚的三种新酮甙. 植物学报, 4, 422-428.

[60] 常海涛, 史玉俊 (1999) 茄中的翠雀素对人纤维肉瘤HT-1080侵袭的体外抑制作用. 中草药, 6, 附5.

[61] 黄朝辉, 曾光尧, 徐康平, 谭桂山 (2003) 呫吨酮类化合物及其药理活性. 国外医药: 植物药分册, 3, 93-100.

[62] Riscoe, M., Kelly, J.X. and Winter, R. (2005) Xanthones as antimalarial agents: Discovery, mode of action, and optimization. Current Medicinal Chemistry, 12, 2539-2549.

[63] Lyles, J.T., Negrin, A., Kennelly, E.J., Khan, S.I. and He, K. (2014) In vitro antiplasmodial activity of benzophenones and xanthones from edible fruits of Garcinia species. Planta Medica, 80, 676-681.

[64] Fouotsa, H., Tatsimo, S.J.N., Neaumann, B., Michalek, C., Mbazoa, C.D., Nkengfack, A.E., Sewald, N. and Lannang, A.M. (2014) A new xanthone derivative from twigs of Garcinia nobilis. Natural Product Research, 28, 1030-1036.

[65] Wu, Y., Hua, M.Y., Yang, L., Li, X., Bian, J.L., Jiang, F., Sun, H.P., You, Q.D. and Zhang, X.J. (2015) Xanthone with improved druglike properties and in vivo antitumor potency. Bioorganic & Medicinal Chemistry Letters, 25, 2584- 2588.

[66] Mah, S.H., Ee, G.C.L., The, S.S., Sukari, M.A. and Pak, J. (2015) Antiproliferative xanthone derivatives from Calophyllum inophyllum and Calophyllum soulattri. Pharmaceutical Sciences, 28, 425-429.

[67] Lin, C.N., Liou, S.J., Lee, T.H., Chuang, Y.C. and Won, S.J. (1996) Xanthone derivatives as potential anti-cancer drugs. Journal of Pharmacy and Pharmacology, 48, 539-544.

[68] Liou, S.S., Shieh, W.L., Cheng, T.H., Won, S.J. and Lin, C.N. (1993) Gamma-pyrone compounds as potential anti-cancer drugs. Journal of Pharmacy and Pharmacology, 45, 791-794.

[69] Rewcastle, G.W., Atwell, G.J., Baguley, B.C., Calveley, S.B. and Denny, W.A. (1989) Potential antitumor agents. 58. Synthesis and structure-activity relationships of substituted xanthenone-4-acetic acids active against the colon 38 tumor in vivo. Journal of Medicinal Chemistry, 32, 793-799.

[70] Rewcastle, G.W., Atwell, G.J., Baguley, B.C., Boyd, M., Thomsen, L.L., Zhuang, L. and Denny, W.A. (1991) Potential antitumor agents. 63. Structure-activity relationships for side-chain analogs of the colon 38 active agent 9-oxo-9H- xanthene-4-acetic acid. Journal of Medicinal Chemistry, 34, 2864-2870.

[71] 苏全冠 (2012) 呫吨酮类化合物抗肿瘤作用及机制研究. 博士论文, 中山大学, 广州.

[72] Shen, R., Wang, W.H. and Yang, G.L. (2014) DNA binding property and antitumor evaluation of xanthone with dimethylamine side chain. Journal of Fluorescence, 24, 959-966.

[73] 王道毅, 陈炼, 李忌, 李伯刚 (2000) 知母宁(Chinonin)对阿霉素的减毒增效作用. 天然产物开发与应用, 4, 8-11.

[74] Jittiporn, K., Suwanpradid, J., Patel, C., Rojas, M., Thirawarapan, S., Suvitayavat, W., Moongkarndi, P. and Caldwell, R. (2014) Anti-angiogenic actions of the mangosteen polyphenolic xanthone derivative α-mangostin. Microvascular Research, 93, 72-79.

[75] Sidahmed, H.M.A., Abdelwahab, S.I., Mohan, S., Abdulla, M.A., Taha, M.M.E., Hashim, N.M., Hadi, A.H.A., Vadivelu, J., Fai, M.L., Rahmani, M. and Yahayu, M. (2013) α-Mangostin from Cratoxylum arborescens (Vahl) blume demonstrates anti-ulcerogenic property: A mechanistic study. Evidence-Based Complementary and Alternative Medicine, 2013, Article ID: 450840.

[76] 刘思好, 石端正, 范若皓, 姜德建 (2008) (口山)酮的心血管药理作用研究进展. 中国临床药理学与治疗学, 11, 1304-1308.

[77] Liu, Q.Y., Wang, Y.T. and Lin, L.G. (2015) New insights into the anti-obesity activity of xanthones from Garcinia mangostana. Food & Function, 6, 383-393.

分享
Top