撞击流颗粒包覆过程的流体动力学行为
The Behavior of Fluid Dynamics during Particles Coating in Impinging Stream

作者: 魏炜 , 刘凤霞 , 许晓飞 , 王晓娟 , 王茵 * , 李志义 , 刘志军 :大连理工大学流体与粉体工程研究设计所,辽宁 大连;

关键词: 撞击流停留时间渗入距离流场测试Impinging Stream Residence Time Through Length Velocity Field Measurement

摘要: 为了深入研究撞击流过程中,颗粒包覆工艺传递过程的强化机理,建立了气固两相撞击流中颗粒在流场中的运动模型,对颗粒在流场中的停留时间、渗入距离等参数进行了模拟计算。选取单喷嘴喷射单一颗粒、单喷嘴喷射颗粒群以及双喷嘴喷射颗粒群三种流动情况,在不同的膨胀前压力、膨胀前温度和喷嘴出口间距等操作工艺参数条件下,得出了颗粒在气固两相撞击流中的停留时间与渗入距离的变化规律。此外,利用粒子图像测速技术测试了流体喷射过程中颗粒运动情况,对气固两相撞击流场中的速度分布进行了定量描述。

Abstract:
This work establishes the motion model for the particles in the gas-solid impact flow, to study the strengthening mechanism of the flow transfer in the impinging fluid. The particles’ residence time and particles through length are simulated. Three conditions including the condition of single particle from single nozzle (SP), particles group from single nozzle (SPG) and particles group from double nozzles (DPG) are chosen in this study. Also, the pressure and the temperature before expansion as well as the distance between two opposite nozzles exits are defined as the different initial conditions. The changing tendencies for the particles’ residence time and particle through length of the particle are obtained. In addition, the Particle Image Velocimetry is used to describe the characteristic of the supercritical gas-solid impact flow.

文章引用: 魏炜 , 刘凤霞 , 许晓飞 , 王晓娟 , 王茵 , 李志义 , 刘志军 (2015) 撞击流颗粒包覆过程的流体动力学行为。 流体动力学, 3, 19-27. doi: 10.12677/IJFD.2015.33003

参考文献

[1] 李凤生, 姜炜, 付廷明, 杨毅 (2007) 药物粉体技术. 化学工业出版社, 北京.

[2] Xie, Y.T., Zheng, X.B., Huang, L.P., et al. (2012) Influence of hierarchical hybrid micro/nano-structured surface on biological performance of titanium coating. Journal of Materials Science, 47, 1411-1417.
http://dx.doi.org/10.1007/s10853-011-5921-x

[3] 宋健, 陈磊, 效军 (2001) 微胶囊化技术及应用. 化学工业出版社, 北京.

[4] 牟绍艳, 路遥 (2011) 密胺树脂微球微胶囊的制备及应用研究进展. 现代化工, 2, 17-20.

[5] Rama, D., Shami, T.C. and Bhasker Rao, K.U. (2009) Microencapsulation technology and applications. Defence Science Journal, 59, 82-95.

[6] 黄玲, 姬书亮 (2012) 微胶囊抗菌剂在织物整理中的应用. 印染助剂, 2, 1-5.

[7] 周文君, 姜子涛, 李荣 (2012) 纳米微胶囊在食品中应用的最新进展. 食品工业科技, 2, 427-429.

[8] 董晓, 姜子涛, 李荣 (2011) 微胶囊技术在生物领域中的应用及研究进展. 农产品加工学刊, 10, 108-110.

[9] 曾春香, 张斯汉 (2010) 缓释、控释药用高分子材料的临床应用. 中国组织工程研究与临床康复, 21, 3939-3942.

[10] Varona, S., Rojo, S.R., Martín, Á., Cocero, M.J., Serra, A.T., Crespo, T. and Duarte, C.M.M. (2013) Antimicrobial activity of lavandin essential oil formulations against three pathogenic food-borne bacteria. Industrial Crops and Products, 42, 243-250.
http://dx.doi.org/10.1016/j.indcrop.2012.05.020

[11] Elperin, I.T. (1961) Heat and mass transfer in opposing currents. Journal of Engineering Physics, 6, 62-68.

[12] Tamir, A (1999) Imping-ing-stream reactor-fundamentals and application. Chemical Industry Press, Beijing.

[13] Tamir, A. and Kitron, A. (1987) Applications of impinging streams in chemical engineering process: Review. Chemical Engineering Communications, 50, 241-330.
http://dx.doi.org/10.1080/00986448708911828

[14] Hosseinalipour, S.M. and Mujumdar, A.S. (1995) Superheated steam drying of a single particle in an impinging stream dryer. Drying Technology, 13, 1279-1303.
http://dx.doi.org/10.1080/07373939508917022

[15] 伍沅 (2005) 撞击流——原理•性质•应用. 化学工业出版社, 北京.

[16] 孙勤, 杨阿三, 程榕, 郑燕萍 (2005) 气–液撞击流过程中液相停留时间分布的实验测定. 浙江工业大学学报, 2, 158-161.

[17] Koched, A., Pavageau, M. and Aloui, F. (2011) Experimental investigations of transfer phenomena in a confined plane turbulent impinging water jet. Journal of Fluids Engineering, 133, 1-13.
http://dx.doi.org/10.1115/1.4004090

[18] 李伟锋, 孙志刚, 刘海峰, 王辅臣 (2009) 两喷嘴对置撞击流径向射流流动特征. 化工学报, 10, 2453-2459.

[19] Chen, H.J., Moshfegh, B. and Cehlin, M. (2012) Numerical investigation of the flow behavior of an isothermal impinging jet in a room. Building and Environment, 49, 154-166.
http://dx.doi.org/10.1016/j.buildenv.2011.09.027

[20] 栗晶, 蒋贵丰, 柳朝晖, 郑楚光 (2014) 气固两相对撞流颗粒运动特性分析. 工程热物理学报, 11, 2210-2215.

[21] 杜敏, 周宾 (2013) 气固两相撞击流内颗粒运动规律的实验研究. 热能动力工程, 6, 611-615.

[22] Tuerk, M. and Bolten, D. (2010) Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS): Results for naproxen. Journal of Supercritical Fluids, 55, 778-785.
http://dx.doi.org/10.1016/j.supflu.2010.09.023

[23] Hezave, A.Z. and Esmaeilzadeh, F. (2011) The effects of RESS parameters on the diclofenac particle size. Advanced Powder Technology, 22, 587-595.
http://dx.doi.org/10.1016/j.apt.2010.08.010

[24] 魏炜, 李志义, 刘凤霞, 刘志军, 池胜 (2012) 超临界撞击流技术制备微胶囊工艺. 功能材料, 18, 1-4.

[25] Hirunsit, P., Huang, Z., Srinophakun, T., Charoenchaitrakool, M. and Kawi, S. (2005) Particle formation of ibuprofen- supercritical CO2 system from rapid expansion of supercritical solutions (RESS): A mathematical model. Powder Technology, 154, 83-94.
http://dx.doi.org/10.1016/j.powtec.2005.03.020

[26] 姚晓虹 (2011) 超临界撞击流流场的实验研究与数值模拟. 硕士论文, 大连理工大学, 大连.

分享
Top