TiO2纳米结构形貌可控水热合成进展
Research Progress in Morphology-Controllable Hydrothermal Synthesis of TiO2 Nanostructures

作者: 范拯华 , 刘道瑞 , 史国利 , 孟凡明 :安徽大学物理与材料科学学院,安徽 合肥;

关键词: 水热法TiO2形貌纳米材料进展Hydrothermal Method TiO2 Morphology Nano-Particle Material Progress

摘要:
本文综述了水热法制备纳米材料的特点以及用此法制备不同形貌的TiO2纳米粉体的研究现状,包括零维(纳米颗粒)、一维(纳米线、纳米管等)、二维(纳米片、纳米薄膜等)、三维(纳米花)等,分别阐述了不同形貌TiO2纳米材料已经取得的研究工作,展望了水热法制备纳米材料发展前景及将来需要解决的关键问题。

Abstract: In the paper, features of hydrothermal method for preparation of nanomaterials and research progress of TiO2 nanoparticles with different morphology were summarized, including zero-di- mension (nano-part icles), one-dimension (nanowires, nanobutes et al.), two-dimension (nano-sheets, nanofilms et al.) and three-dimension (nanoflowers et al.). The progress of different morphology of TiO2 nanomaterials was stated. The prospect of hydrothermal method as well as the existing problems in the future was discussed.

文章引用: 范拯华 , 刘道瑞 , 史国利 , 孟凡明 (2015) TiO2纳米结构形貌可控水热合成进展。 合成化学研究, 3, 64-69. doi: 10.12677/SSC.2015.33010

参考文献

[1] 孟凡明, 肖磊, 孙兆奇 (2009) TiO2薄膜光催化性能研究进展. 安徽大学学报: 自然科学版, 33, 81-84.

[2] Park, J.T., Roh, D.K., Pater, R., et al. (2010) Preparation of TiO2 spheres with hierarchical pores via grafting polyme-rization and sol-gel process for dye-sensitized solar cells. Journal of Materials Chemistry, 20, 8521-8530.
http://dx.doi.org/10.1039/c0jm01471k

[3] Meng, F.M., Lu, F., Wang, L.N., et al. (2012) Novel fabrication and synthetic mechanism of CeO2 nanorods by a chloride-assisted hydrothermal method. Science of Advanced Materials, 4, 1018-1023.
http://dx.doi.org/10.1166/sam.2012.1387

[4] Meng, F.M. and Sun, Z.Q. (2009) A mechanism for enhanced hydrophilicity of silver nanoparticles modified TiO2 thin films deposited by RF magnetron sputtering. Applied Surface Science, 255, 6715-6720.
http://dx.doi.org/10.1016/j.apsusc.2009.02.076

[5] 鲁飞, 孟凡明 (2012) C/Cr掺杂氧化钛粉体的制备与氧空位调控. 安徽大学学报: 自然科学版, 36, 39-42.

[6] Meng, F.M., Zhang, C., Bo, Q.H. and Zhang, Q. (2013) Hydrothermal synthesis and room-temperature ferromagnetism of CeO2 nanocolumns. Materials Letters, 99, 5-7.
http://dx.doi.org/10.1016/j.matlet.2013.02.007

[7] Meng, F.M., Wang, L.N. and Cui, J.B. (2013) Controllable synthesis and optical properties of nano-CeO2 via a facile hydrothermal route. Journal of Alloys and Compounds, 556, 102-108.
http://dx.doi.org/10.1016/j.jallcom.2012.12.096

[8] 郭峰, 国世上, 赵兴中 (2012) 碱性环境水热法制备TiO2纳米颗粒及其在染料敏化太阳能中的应用. 湖北大学学报(自然科学学报), 34, 255-259.

[9] Li, X.W., Zheng, W.J., He, G.H., et al. (2014) Morphology control of TiO2 nanoparticle in microemulsion and its pho-tocatalytic property. ACS Sustainable Chemistry Engineering, 2, 288-295.
http://dx.doi.org/10.1021/sc400328u

[10] Wang, C. and Wu, T. (2015) TiO2 nanoparticles with efficient photocatalytic activity towards gaseous benzene degradation. Ceranmics International, 41, 2836-2839.
http://dx.doi.org/10.1016/j.ceramint.2014.10.104

[11] Zhou, W.J., Liu, H., Boughton, R.I., Du, G.J., Lin, J.J., Wang, J.Y. and Liu, D. (2010) One-dimensional single-crystalline Ti-O based nanostructures: Properties, synthesis, modifications and applications. Journal of Materials Chemistry, 20, 5993-6008.
http://dx.doi.org/10.1039/b927224k

[12] Liu, B. and Ayd, E.S. (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of American Chemical Society, 131, 3985-3990.
http://dx.doi.org/10.1021/ja8078972

[13] Zhang, X.W., Pan, J.H., Du, A.J., Fu, W.J., Sun, D.D. and Leckie, J.O. (2009) Combination of one-dimensional TiO2 nanowire photocatalytic oxidation with microfiltration for water treatment. Water Research, 43, 1179-1186.
http://dx.doi.org/10.1016/j.watres.2008.12.021

[14] 王厚山 (2013) 水热法制备一维Ti-O纳米材料的性能与表征. 硅酸盐通报, 9, 1836-1840.

[15] Li, R.M., Chen, G.M., Dong, G.J. and Sun, X.H. (2014) Controllable synthesis of nanostructured TiO2 by CTAB- assisted hydrothermal route. New Journal of Chemistry, 38, 4684-4689.
http://dx.doi.org/10.1039/C4NJ00299G

[16] Bavykin, D.V., Kulak, A.N. and Walsh, F.C. (2011) Control over the hierarchical structure of titanate nanotube agglomerates. Langmuir, 27, 5644-5649.
http://dx.doi.org/10.1021/la200527p

[17] Zhou, W.J., Du, G.J., Hu, P.G., Li, G.H., Wang, D.Z., Liu, H., et al. (2011) Nanoheterostructures on TiO2 nanobelts achieved by acid hydrothermal method with enhanced photocatalytic and gas sensitive performance. Journal of Materials Chemistry, 21, 7937-7945.
http://dx.doi.org/10.1039/c1jm10588d

[18] Han, X.G., Kuang, Q., Jin, M.S., Xie, Z.X. and Zheng, L. (2009) Synthesis of titania nanosheets with a large percentage of exposed (001) facets and related photocatalytic properties. Journal of American Chemical Society, 131, 3153- 3154.
http://dx.doi.org/10.1021/ja8092373

[19] Xiang, Q.J., Lv, K.L. and Yu, J.G. (2010) Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Applied Catalysis: B, 96, 557-564.
http://dx.doi.org/10.1016/j.apcatb.2010.03.020

[20] 蔡巧兰 (2013) 二维三维结构TiO2光催化剂的制备、表征及光催化活性. 硕士学位论文, 浙江工业大学, 杭州.

[21] Hu, C., Zhang, X., Li, W.T., Yan, Y., Xi, G.C., Yang, H.F., et al. (2014) Large-scale, ultrathin and (001) facet exposed TiO2 nanosheet superstructures and their applications in photocatalysis. Journal of Materials Chemistry A, 2, 2040- 2043.
http://dx.doi.org/10.1039/c3ta14343k

[22] Ko, Y.H., Leem, J.W. and Yu, J.S. (2011) Controllable synthesis of periodic flower-like ZnO nanostructures on Si subwavelength grating structures. Nanotechnology, 22, Article ID: 205604.
http://dx.doi.org/10.1088/0957-4484/22/20/205604

[23] Li, G.L., Liu, J.Y., Lan, J., Li, G., Chen, Q.W. and Jiang, G.B. (2014) 3D hierarchical anatase TiO2 superstructures constructed by “nanobricks” built nanosheets with exposed {001} facets: Facile synthesis, formation mechanism and superior photocatalytic activity. CrystEngComm, 16, 10547-10552.
http://dx.doi.org/10.1039/C4CE01295J

[24] Sun, Z.Q., Kim, J.H., Zhao, Y., Bijarbooneh, F., Malgras, V., Lee, Y., et al. (2011) Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. Journal of the American Chemical Society, 133, 19314-19317.
http://dx.doi.org/10.1021/ja208468d

[25] Zhao, B., Chen, F., Huang, Q.W. and Zhang, J.L. (2009) Brookite TiO2 nanoflowers. Chemical Communications, 34, 5115-5117.
http://dx.doi.org/10.1039/b909883f

分享
Top