基于改进的序列梯度–修复算法的飞行器上升段轨迹优化
An Improved Gradient-Restoration Sequential Algorithm for Endoatmospheric Ascent Trajectory Optimization

作者: 傅瑜 , 李延军 , 陈阳 , 梁欣欣 , 王勇 :北京宇航系统工程研究所,北京;

关键词: 上升段轨迹优化序列梯度–修复算法Ascent Trajectory Trajectory Optimization Sequential Gradient-Restoration Algorithm

摘要:
针对飞行器大气层内上升段轨迹优化问题,提出了一种改进的序列梯度–修复算法。根据序列梯度–修复算法仅可以处理等式约束的特点,给出了不等式过程约束的转化过程,同时为了解决飞行器大气层内上升段运动数学模型的强非线性带来的状态量求解更新困难的难题,引入了状态积分,改进了算法的更新方法,最后对改进的算法在飞行器大气层内上升段轨迹优化中的实用性进行了仿真分析。仿真结果表明改进的序列梯度–修复算法能够较好的获得满足末端约束和过程约束的大气层内上升段的最优轨迹,具有较强的适应性。

Abstract: An improved sequential gradient-restoration algorithm is developed to solve endoatmospheric ascent trajectory optimization problem. First, the transformation process of trajectory constraints is introduced to accommodate the character that sequential gradient-restoration algorithm can deal with equation constraints only. Then the state integral method is introduced and the update method of the sequential gradient-restoration algorithm is improved to deal with the problem of state solve and update, due to the strong nonlinearity of endoatmospheric ascent dynamics. Finally, the simulation analysis of the improved algorithm ascent trajectory optimization in aircraft atmosphere of practicability is analyzed through simulation under five different scenarios. Simulation results demonstrate the validity and adaptability of the improved algorithm for trajectory optimization with terminal constraints and process constraints.

文章引用: 傅瑜 , 李延军 , 陈阳 , 梁欣欣 , 王勇 (2015) 基于改进的序列梯度–修复算法的飞行器上升段轨迹优化。 国际航空航天科学, 3, 37-47. doi: 10.12677/JAST.2015.33005

参考文献

[1] Betts, J.T. (1998) Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 21, 193-207.
http://dx.doi.org/10.2514/2.4231

[2] 雍恩米, 陈磊, 唐国金 (2008) 飞行器轨迹优化数值方法综述. 宇航学报, 2, 397-406.

[3] 陈聪, 关成启, 史宏亮 (2009) 飞行器轨迹优化的直接数值解法综述. 战术导弹控制技术, 2, 33-40.

[4] 陈功, 傅瑜, 郭继峰 (2011) 飞行器轨迹优化方法综述. 飞行力学, 4, 1-5.

[5] Gonzalez, S. and Miele, A. (1978) Sequential gradient-restoration algorithm for optimal control problems with general boundary conditions. Journal of Optimization Theory and Applications, 26, 395-425.
http://dx.doi.org/10.1007/BF00933463

[6] Miele, A., Wang, T. and Basapur, V.K. (1986) Primal and dual formulations of sequential gradient-restoration algorithms for trajectory optimization problems. Acta Astronautica, 13, 491-505.
http://dx.doi.org/10.1016/0094-5765(86)90028-7

[7] Rom, M. and Avriel, M. (1989) Properties of the sequential gradient-restoration algorithm (SGRA), part 2: Convergence analysis. Journal of Optimization Theory and Applications, 62, 99-125.
http://dx.doi.org/10.1007/BF00939632

[8] Miele, A. and Wang, T. (2003) Multiple-subarc gra-dient-restoration algorithm, part 1: Algorithm STRUCTURE. Journal of Optimization Theory and Applications, 116, 1-17.
http://dx.doi.org/10.1023/A:1022114117273

[9] Miele, A. and Wang, T. (2003) Multiple-subarc gradient-restoration algorithm, part 2: Application to a multistage launch vehicle design. Journal of Optimization Theory and Applications, 116, 19-39.
http://dx.doi.org/10.1023/A:1022154001343

[10] Weeks, W.W. (2006) The computation of optimal rendezvous trajectories using the sequential gradient-restoration algorithm. Doctor Dissertation of Rice University, Houston.

分享
Top