﻿ 变化环境下非一致性水文频率分析研究综述

变化环境下非一致性水文频率分析研究综述Review on Nonstationary Hydrological Frequency Analysis under Changing Environments

Abstract: The assumption of stationarity is a basic premise behind conventional hydrological frequency analysis for hydrological design of water resources projects. Under changing environments, hydrological series in many rivers have been found to exhibit nonstationarity. As a result, the methods for conventional hy-drological frequency analysis based on stationarity assumption may be invalid. In recent years, the fre-quency analysis for nonstationary hydrological series has attracted much attention. In this paper, re-searches on nonstationary hydrological frequency analysis are briefly reviewed in terms of four aspects: 1) detection of the nonstationarity in univariate hydrological series; 2) mathematical description and physical attribution of the nonstationarity in univariate hydrological series; 3) definition and calculation of return period of univariate events under nonstationary conditions; and 4) nonstationary frequency analysis for multivariate hydrological series. Finally, some perspectives are presented for further de-velopment and improvement of the nonstationary hydrological frequency analysis.

[1] MONTANARI, A., YOUNG, G., SAVENIJE, H. H. G., et al. “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013-2022. Hydrological Sciences Journal, 2013, 58(6): 1256-1275.
http://dx.doi.org/10.1080/02626667.2013.809088

[2] 梁忠民, 胡义明, 王军. 非一致性水文频率分析的研究进展[J]. 水科学进展, 2011, 22(6): 864-871. LIANG Zhongmin, HU Yiming and WANG Jun. Advances in hydrological frequency analysis of non-stationary time series. Advances in Water Science, 2011, 22(6): 864-871. (in Chinese)

[3] MILLY, P. C. D., BETANCOURT, J., FALKENMARK, M., et al. Stationarity is dead: Whither water management? Science, 2008, 319(5863): 573-574.
http://dx.doi.org/10.1126/science.1151915

[4] CHOW, V. T., MAIDMENT, D. R. and MAYS, L. W. Applied hydrology. New York: McGrawHill, 1988.

[5] SALAS, J. D. Analysis and modeling of hydrologic time series. In: MAIDMENT. D., Ed., Handbook of Hydrology, New York: McGraw-Hill, 1993: 19.1-19.72.

[6] KHALIQ, M. N., OUARDA, T. B. M. J., ONDO, J. C., et al. Frequency analysis of a sequence of dependent and/or non-sta- tionary hydro-meteorological observations: A review. Journal of Hydrology, 2006, 329(3): 534-552.
http://dx.doi.org/10.1016/j.jhydrol.2006.03.004

[7] 谢平, 陈广才, 雷红富, 等. 变化环境下地表水资源评价方法[M]. 北京: 科学出版社, 2009. XIE Ping, CHEN Guangcai, LEI Hongfu, et al. Surface water resources evaluation methods on changing environment. Beijing: Science Press, 2009. (in Chinese)

[8] THERESIA, P., BRUNO, M. Trends in flood magnitude, frequency and seasonality in Germany in the period 1951-2002. Journal of Hydrology, 2009, 371(1-4): 129-141.
http://dx.doi.org/10.1016/j.jhydrol.2009.03.024

[9] VILLARINI, G., SMITH, J. A., SERINALDI, F., BALES, J., BATES, P. D. and KRAJEWSKI, W. F. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Advance in Water Resource, 2009, 32(8): 1255-1266.

[10] XIONG, L., GUO, S. Trend test and change-point detection for the annual discharge series of the Yangtze River at the Yichang hydrological station. Hydrological Sciences Journal, 2004, 49(1): 99-112.
http://dx.doi.org/10.1623/hysj.49.1.99.53998

[11] LI, D., XIE, H. and XIONG, L. Temporal change analysis based on data characteristics and nonparametric test. Water Resources Management, 2014, 28(1): 227-240.
http://dx.doi.org/10.1007/s11269-013-0481-2

[12] XIONG, L., DU, T., XU, C. Y., GUO, S. L., JIANG, C. and GIPPEL, C. J. Non-stationary annual maximum flood frequency analysis using the norming constants method to consider non-stationarity in the annual daily flow series. Water Resources Management, 2015, 29(10): 3615-3633.
http://dx.doi.org/10.1007/s11269-015-1019-6

[13] 谢平, 陈广才, 雷红富, 武方圆. 水文变异诊断系统[J]. 水力发电学报, 2010, 29(1): 85-91. XIE Ping, CHEN Guangcai, LEI Hongfu and WU Fangyuan. Hydrological alteration diagnosis system. Journal of Hydroelectric Engineering, 2010, 29(1): 85-91. (in Chinese)

[14] KOUTSOYIANNIS, D. Nonstationarity versus scaling in hydrology. Journal of Hydrology, 2006, 324(1-4): 239-254.
http://dx.doi.org/10.1016/j.jhydrol.2005.09.022

[15] VILLARINI, G., SERINALDI, F., SMITH, J. A. and KRAJEWSKI, W. F. On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resources Research, 2009, 45(8): W08417.
http://dx.doi.org/10.1029/2008WR007645

[16] MONTANARI, A., KOUTSOYIANNIS, D. Modeling and mitigating natural hazards: Stationarity is immortal! Water Resources Research, 2014, 50(12): 9748-9756.
http://dx.doi.org/10.1002/2014WR016092

[17] 江聪, 熊立华. 基于GAMLSS模型的宜昌站年径流序列趋势分析[J]. 地理学报, 2012, 67(11): 1505-1514. JIANG Cong, XIONG Lihua. Trend analysis for the annual discharge series of the Yangtze River at the Yichang hydrological station based on GAMLSS. Acta Geographica Sinica, 2012, 67(11): 1505-1514. (in Chinese)

[18] STRUPCZEWSKI, W. G., SINGH, V. P. and FELUCH, W. Non-stationary approach to at-site flood frequency modeling I. Maximum likelihood estimation. Journal of Hydrology, 2001, 248(1): 123-142.
http://dx.doi.org/10.1016/S0022-1694(01)00397-3

[19] SERINALDI, F., KILSBY, C. G. Stationarity is undead: Uncertainty dominates the distribution of extremes. Advances in Water Resources, 2015, 77: 17-36.

[20] STRUPCZEWSKI, W. G., KACZMAREK, Z. Non-stationary approach to at-site flood frequency modeling II. Weighted least squares estimation. Journal of Hydrology, 2001, 248(1): 143-151.
http://dx.doi.org/10.1016/S0022-1694(01)00398-5

[21] VILLARINI, G., SERINALDI, F. Development of statistical models for at-site probabilistic seasonal rainfall forecast. International Journal of Climatology, 2012, 32(14): 2197-2212.

[22] LÓPEZ, J., FRANCÉS, F. Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates. Hydrology and Earth System Sciences, 2013, 17(8): 3189-3203.
http://dx.doi.org/10.5194/hess-17-3189-2013

[23] XIONG, L., JIANG, C. and DU, T. Statistical attribution analysis of the nonstationarity of the annual runoff series of the Weihe River. Water Science & Technology, 2014, 70(5): 939-946.
http://dx.doi.org/10.5194/hess-17-3189-2013

[24] LIU, D. D., GUO, S. L., LIAN, Y. Q., XIONG, L. H. and CHEN, X. H. Climate-informed low-flow frequency analysis using nonstationary modeling. Hydrological Processes, 2014, 29(9): 2112-2124.
http://dx.doi.org/10.1002/hyp.10360

[25] 熊立华, 江聪. 考虑非一致性的渭河流域设计洪水过程线研究[J]. 水资源研究, 2015, 4(2): 109-119. XIONG Lihua, JIANG Cong. Designing flood hydrograph of the Weihe River considering nonstationarity. Journal of Water Resources Research, 2015, 4(2): 109-119. (in Chinese)

[26] GOTTSCHALK, L., YU, K. X., LEBLOIS, E. and XIONG, L. H. Statistics of low flow: Theoretical derivation of the distribution of minimum streamflow series. Journal of Hydrology, 2013, 481: 204-219.

[27] YU, K. X., XIONG, L. and GOTTSCHALK, L. Derivation of low flow distribution functions using copulas. Journal of Hydrology, 2014, 508: 273-288.

[28] XIONG, L., YU, K. and GOTTSCHALK, L. Estimation of the distribution of annual runoff from climatic variables using copulas. Water Resources Research, 2014, 50(9): 7134-7152.
http://dx.doi.org/10.1002/2013WR015159

[29] WIGLEY, T. M. L. The effect of climate change on the frequency of ab-solute extreme events. Climate Monitor, 1988, 17(1-2): 44-55.

[30] WIGLEY, T. M. L. The effect of changing climate on the frequency of absolute extreme events. Climatic Change, 2009, 97(1-2): 67-76.
http://dx.doi.org/10.1007/s10584-009-9654-7

[31] PAREY, S., MALEK, F., LAURENT, C. and DACUNHA-CASTELLE, D. Trends and climate evolution: Statistical approach for very high temperatures in France. Climatic Change, 2007, 81(3-4): 331-352.
http://dx.doi.org/10.1007/s10584-006-9116-4

[32] PAREY, S., HOANG, T. T. H. and DACUNHA-CASTELLE, D. Dif-ferent ways to compute temperature return levels in the climate change context. Environmetrics, 2010, 21(7-8): 698-718.
http://dx.doi.org/10.1002/env.1060

[33] SALAS, J. D., OBEYSEKERA, J. Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. Journal of Hydrologic Engineering, 2014, 19(3): 554-568.
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000820

[34] HAAN, C. T. Statistical methods in hydrology. 2nd Edition, Ames: Iowa State University Press, 2002.

[35] MOOD, A., GRAYBILL, F. and BOES, D. C. Introduction to the theory of statistics. 3rd Edition, New York: McGraw-Hill, 1974.

[36] COOLEY, D. Return periods and return levels under climate change. In: AGHAKOUCHAK, A., EASTERLING, D., HSU, K., SCHUBERT, S. and SOROOSHIAN, S., Eds., Extremes in a chang-ing climate, Dordrecht: Springer, 2013: 97-114.
http://dx.doi.org/10.1007/978-94-007-4479-0_4

[37] OLSEN, J. R., LAMBERT, J. H. and HAIMES, Y. Y. Risk of ex-treme events under nonstationary conditions. Risk Analysis, 1998, 18(4): 497-510.
http://dx.doi.org/10.1111/j.1539-6924.1998.tb00364.x

[38] DU, T., XIONG, L., XU, C. Y., GIPPEL, C. J., GUO, S. L. and LIU, P. Return period and risk analysis of nonstationary low- flow series under climate change. Journal of Hydrology, 2015, 527: 234-250.

[39] CHEBANA, F., OUARDA, T. B. M. J. and DUONG, T. C. Testing for multivariate trends in hydrologic frequency analysis. Journal of Hydrology, 2013, 486: 519-530.

[40] BEN AISSIA, M. A., CHEBANA, F., OUARDA, T. B. M. J., ROY, L., BRUNEAU, P. and BARBET, M. Dependence evolution of hydrological characteristics, applied to floods in a climate change context in Québec. Journal of Hydrology, 2014, 519(Part A): 148-163.

[41] SALVADORI, G., DE MICHELE, C. Analytical calculation of storm volume statistics involving Pareto-like intensity-duration marginals. Geophysical Research Letters, 2004, 31(4): L045024.
http://dx.doi.org/10.1029/2003GL018767

[42] FAVRE, A. C., EL ADLOUNI, S. and PERREAULT, L. Multivariate hydrological frequency analysis using copulas. Water Resources Research, 2004, 40(1): W011011.
http://dx.doi.org/10.1029/2003WR002456

[43] 熊立华, 郭生练, 肖义, 袁汉芳. Copula 联结函数在多变量水文频率分析中的应用[J]. 武汉大学学报(工学版), 2005, 38(6): 16-19. XIONG Lihua, GUO Shenglian, XIAO Yi and YUAN Hanfang. Application of copulas to multivariate hydrological frequency analysis. Engineering Journal of Wuhan University, 2005, 38(6): 16-19. (in Chinese)

[44] SALVADORI, G., DE MICHELE, C., KOTTEGODA, N. T. and ROSSO, R. Extremes in nature: An approach using Copulas. Dordrecht: Springer, 2007.

[45] SERINALDI, F., GRIMALDI, S. Fully nested 3-Copula: Procedure and application on hydrological data. Journal of Hydrologic Engineering, 2007, 12(4): 420-430.
http://dx.doi.org/10.1061/(ASCE)1084-0699(2007)12:4(420)

[46] GRIMALDI, S., SERINALDI, F. Asymmetric copula in multivariate flood frequency analysis. Advances in Water Resources, 2006, 29(8): 1115-1167.

[47] GRÄLER, B., VAN DEN BERG, M., VANDENBERGHE, S., PETROSELLI, A., GRIMALDI, S., DE BAETS, B. and Verhoest, N. E. C. Multivariate return periods in hydrology: A critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Sciences, 2013, 17(4): 1281-1296.
http://dx.doi.org/10.5194/hess-17-1281-2013

[48] SALVADORI, G., DE MICHELE C. Multivariate multi-parameter extreme value models and return periods: A copula approach. Water Resources Research, 2010, 46(10): W10501.
http://dx.doi.org/10.1029/2009WR009040

[49] ZHANG, L., SINGH, V. P. Bivariate rainfall frequency distributions using Archimedean copulas. Journal of Hydrology, 2007, 332(1-2): 93-109.
http://dx.doi.org/10.1016/j.jhydrol.2006.06.033

[50] STRUPCZEWSKI, W. G., SINGH, V. P. and MITOSEK, H. T. Nonstationary approach to at-site flood frequency modeling III. Flood analysis of Polish rivers. Journal of Hydrology, 2001, 248(1-4): 152-167.
http://dx.doi.org/10.1016/S0022-1694(01)00399-7

[51] 刘章君, 郭生练, 李天元, 等. 基于Copula函数的梯级水库设计洪水地区组成研究[J]. 水资源研究, 2014, 3(2): 124-135. LIU Zhangjun, GUO Shenglian, LI Tianyuan, et al. Regional flood composition of cascade reservoirs based on copula function. Journal of Water Resources Research, 2014, 3(2): 124-135. (in Chinese)
http://dx.doi.org/10.12677/JWRR.2014.32018

[52] 刘章君, 郭生练, 李天元, 胡瑶, 李立平. 设计洪水地区组成的区间估计方法研究[J]. 水利学报, 2015, 46(5): 543-550. LIU Zhangjun, GUO Shenglian, LI Tianyuan, HU Yao and LI Liping. Interval estimation method for design flood region composition. Journal of Hydraulic Engineering, 2015, 46(5): 543-550. (in Chinese)

[53] 刘章君, 郭生练, 李天元, 徐长江. 梯级水库设计洪水最可能地区组成法计算通式[J]. 水科学进展, 2014, 25(4): 549-558. LIU Zhangjun, GUO Shenglian, LI Tianyuan and XU Changjiang. General formula derivation of most likely regional composi-tion method for design flood estimation of cascade reservoirs system. Advances in Water Science, 2014, 25(4): 549-558. (in Chinese)

[54] 冯平, 李新. 基于Copula函数的非一致性洪水峰量联合分析[J]. 水利学报, 2013, 44(10): 1137-1147. FENG Ping, LI Xin. Bivariate frequency analysis of non-stationary flood time series based on Copula methods. Journal of Hy-draulic Engineering, 2013, 44(10): 1137-1147. (in Chinese)

[55] BENDER, J., WAHL, T. and JENSEN, J. Multivariate design in the presence of non-stationarity. Journal of Hydrology, 2014, 514: 123-130.

[56] KATZ, R. W., PARLANG, M. B. and NAVEAU, P. Statistics of extremes in hydrology. Advances in Water Resources, 2002, 25(8): 1287-1304.
http://dx.doi.org/10.1016/S0309-1708(02)00056-8

[57] KHARIN, V. V., ZWIERS, F. W. Estimating extremes in transient climate change simulations. Journal of Climate, 2005, 18(8): 1156-1173.
http://dx.doi.org/10.1175/JCLI3320.1

[58] CUNDERLIK, J. M., OUARDA, T. B. M. J. Regional flood-duration-frequency modeling in a changing environment. Journal of Hydrology, 2006, 318(1-4): 276-291.
http://dx.doi.org/10.1016/j.jhydrol.2005.06.020

[59] 杜涛, 熊立华, 江聪. 渭河流域降雨时间序列非一致性频率分析[J]. 干旱区地理, 2014, 37(3): 468-479. DU Tao, XIONG Lihua and JIANG Cong. Nonstationary frequency analysis of rainfall time series in Weihe River basin. Arid Land Geography, 2014, 37(3): 468-479. (in Chinese)

[60] RIGBY, R. A., STASINOPOULOS, D. M. Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics), 2005, 54(3): 507-554.
http://dx.doi.org/10.1111/j.1467-9876.2005.00510.x

[61] STASINOPOULOS, D. M., RIGBY, R. A. and AKANTZILIOTOU, C. Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, 2008.

[62] JIANG, C., XIONG, L., XU, C. Y. and GUO, S. L. Bivariate frequency analysis of nonstationary low-flow series based on the time-varying copula. Hydrological Processes, 2015, 29(6): 1521-1534.
http://dx.doi.org/10.1002/hyp.10288

Top