基于明胶的掺氮石墨烯/碳基氧气还原催化剂的研究
Study on Gelatin-Based Nitrogen-Doped Graphene/Carbon Based Oxygen Reduction Catalyst

作者: 杨成枫 , 闫春运 , 王成国 , 郭伟伟 :青岛大学化学科学与工程学院,山东 青岛;

关键词: 明胶石墨烯氧还原反应Gelatin Graphene Oxygen Reduction Reaction

摘要:
以氧化石墨烯、明胶为原料,经冷冻干燥及高温碳化之后,得到了从明胶中得到的掺杂氮的碳片层包裹氧化石墨烯的新型催化剂。利用扫描电镜(SEM)、透射电镜(TEM)、X-射线衍射仪(XRD)和旋转环盘电极(RRDE)表征了化合物的物理特性和氧气还原反应的催化性能。在氧气饱和的0.10 mol/L KOH电解液中,该化合物对氧还原反应(ORR)表现出明显的电催化性能,起始电压为−0.11 V (vs. NHE),在燃料电池和金属空气电池领域有潜在应用前景。
 
The nitrogen doped graphene/carbon based oxygen reduction catalyst has been synthesized by freeze-drying and high temperature carbonization of graphene oxide and gelatin. The physical properties and the catalytic performances of oxygen reduction reaction of the compound are evaluated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and rotating ring disc electrode techniques. The compound exhibits great catalytic activity towards oxygen reduction reaction (ORR) with a stating voltage of −0.11 V (vs. RHE) in O2-saturated 0.10 mol/L KOH electrolyte. The catalyst has potential appliance in the field of fuel cell and metal air battery.

文章引用: 杨成枫 , 闫春运 , 王成国 , 郭伟伟 (2015) 基于明胶的掺氮石墨烯/碳基氧气还原催化剂的研究。 可持续能源, 5, 42-48. doi: 10.12677/SE.2015.54006

参考文献

[1] Nam, G., Park, J., Kim, S.T., Shin, D.B., Park, N., Kim, Y., Lee, J.S. and Cho, J. (2014) Metal-free Ketjenblack incor-porated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts. Nano Letters, 14, 1870-1876.
http://dx.doi.org/10.1021/nl404640n

[2] 涂盛辉, 梁海营, 朱细平, 杜军, 万金保 (2013) TiO2负载ZnO纳米棒的制备及其光催化性能. 化工新型材料, 41, 75-77.

[3] 徐莉, 潘国顺, 梁晓璐, 罗桂海, 邹春莉, 陈高攀 (2014) 氮/硫双杂化非贵金属碱性阴离子膜燃料电池阴极非铂催化剂. 高等学校化学学报, 5, 1029-1036.

[4] 孙瑾华, 刘建好, 黄呈珠, 张礼霞, 李伟善 (2008) 二氧化锰为阴极催化剂的微生物燃料电池. 电源技术, 32, 838-840, 844.

[5] 赵东江, 马松艳, 董艳萍, 赵洪波, 尹鸽平, 王振波 (2013) 阴极氧还原催化剂Co0.9Fe0.1Se2.0化合物的制备与性能. 化工新型材料, 41, 88-91.

[6] 王琪, 陆兴, 辛勤, 孙公权 (2014) 多元醇法合成的Pt2.6Sn1Ru0.4/C用作直接乙醇燃料电池高性能阳极催化剂. 催化学报, 8, 1394-1401.

[7] 党岱, 高海丽, 彭良进, 苏允兰, 廖世军, 王晔 (2011) 高性能核壳结构催化剂PdRu@Pt/CNT的制备. 物理化学学报, 27, 2379-2384.

[8] Yang, Z., Berber, M.R. and Nakashima, N. (2015) Design of polymer-coated multi-walled carbon nanotube/carbon black-based fuel cell catalysts with high durability and performance under non-humidified condition. Electrochimica Acta, 170, 1-8.
http://dx.doi.org/10.1016/j.electacta.2015.04.122

[9] 李绍娟, 甘胜, 沐浩然, 徐庆阳, 乔虹, 李鹏飞, 薛运周, 鲍桥梁 (2014) 石墨烯光电子器件的应用研究进展. 新型炭材料, 5, 329-356.

[10] 贾海鹏, 苏勋家, 侯根良, 郭锋, 刘朝辉, 梅冰 (2012) 石墨烯/聚合物纳米复合材料制备与微波吸收性能研究进展. 化工学报, 63, 1663-1668.

[11] 齐学强 (2012) 燃料电池电催化剂催化机理与可控制备. 博士论文, 重庆大学, 重庆.

[12] 胡耀娟 (2012) 金属–石墨烯纳米复合催化剂的制备及在燃料电池中的应用. 博士论文, 南京师范大学, 南京.

[13] Mahato, N., Banerjee, A., Gupta, A., Omar, S. and Balani, K. (2015) Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science, 72, 141-337.
http://dx.doi.org/10.1016/j.pmatsci.2015.01.001

[14] Jeng, K.-T., Hsu, N.-Y. and Chien, C.-C. (2011) Synthesis and evaluation of carbon nanotube-supported RuSe catalyst for direct methanol fuel cell cathode. International Journal of Hydrogen Energy, 36, 3997-4006.
http://dx.doi.org/10.1016/j.ijhydene.2010.10.062

[15] Zhao, D.J., Ma, S.Y. and Yin, G.P. (2013) Synthesis and performance of CoSeO3 compound as a cathodic catalyst for oxygen reduction. Journal of Inorganic Materials, 28, 644-648.
http://dx.doi.org/10.3724/sp.j.1077.2013.12444

[16] Lu, G.Q., Crown, A. and Wieckowski, A. (1999) Formic acid decomposition on polycrystalline platinum and palladized platinum electrodes. The Journal of Physical Chemistry B, 103, 9700-9711.
http://dx.doi.org/10.1021/jp992297x

分享
Top