基因编辑技术的方法、原理及应用
Methods, Principles and Application of Gene Editing

作者: 朱玉昌 , 郑小江 :湖北民族学院生物科学与技术学院,湖北 恩施; 胡一兵 :南京农业大学资源与环境科学学院,江苏 南京;

关键词: 基因编辑方法原理应用Gene Editing Methods Principles Application

摘要:
基因编辑技术的飞速发展为基因功能研究工作提供了更多有力的工具。近十年来相继出现的锌指核酸酶(ZFN)、转录激活子样效应因子核酸酶(TALEN)以及规律性间隔的短回文序列重复簇(CRISPR)已经可以让研究人员很方便的对特定的目的基因进行突变、修复或替换等操作,从而为生物学研究及医学治疗领域带来革命性的变化。本文就有代表性的基因编辑技术的种类、原理及其研究进展进行了综述,并对它们各自的特点及应用前景和值得进一步研究的问题进行了探讨。

Abstract: Fast development of gene editing technologies provides more powerful tools for gene function analysis. Now researchers can easily manipulate targeted gene with the Zinc Finger Nuclease (ZFN), Transcription Activation Like Effector Nuclease (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins (CRISPR) technologies emerged in the last decade. These technologies revolutionized gene functional analysis and medical treatment. In this review, several typical gene editing technologies were listed, and their principles, characteristics and application were discussed.


Abstract:

文章引用: 朱玉昌 , 郑小江 , 胡一兵 (2015) 基因编辑技术的方法、原理及应用。 生物医学, 5, 32-41. doi: 10.12677/HJBM.2015.53005

参考文献

[1] Esvelt, K.M. and Wang, H.H. (2013) Genome-scale engineering for systems and synthetic biology. Molecular Systems Biology, 9, 641.
http://dx.doi.org/10.1038/msb.2012.66

[2] Puchta, H. and Fauser, F. (2013) Gene targeting in plants: 25 years later. The International Journal of Developmental Biology, 57, 629-637.
http://dx.doi.org/10.1387/ijdb.130194hp

[3] Tan, W.S., Carlson, D.F., Walton, M.W., Fahrenkrug, S.C. and Hackett, P.B. (2012) Precision editing of large animal genomes. Advances in Genetics, 80, 37-97.
http://dx.doi.org/10.1016/B978-0-12-404742-6.00002-8

[4] Dianov, G.L. and Hubscher, U. (2013) Mammalian base excision repair: The forgotten archangel. Nucleic Acids Research, 41, 3483-3490.
http://dx.doi.org/10.1093/nar/gkt076

[5] Händel, E.M. and Cathomen, T. (2011) Zinc-finger nuclease based ge-nome surgery: It’s all about specificity. Current Gene Therapy, 11, 28-37.
http://dx.doi.org/10.2174/156652311794520120

[6] Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. (2012) A programmable dual- RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-821.
http://dx.doi.org/10.1126/science.1225829

[7] Ragg, H. (2011) Intron creation and DNA repair. Cellular and Molecular Life Sciences, 68, 235-242.
http://dx.doi.org/10.1007/s00018-010-0532-2

[8] Reissb, B., Schubert, I., Kopchen, K., Wendeler, E., Schell, J. and Puchta, H. (2000) A stimulates sister chromatid exchange and the fidelity of double-strand break repair, but not gene targeting, in plants transformed by agrobacterium. Proceedings of the National Academy of Sciences of the United States of America, 97, 3358-3363.
http://dx.doi.org/10.1073/pnas.97.7.3358

[9] Lieberman-Lazarovich, M. and Levya, A. (2011) Homologous re-combination in plants: An antireview. Methods in Molecular Biology, 701, 51-65.
http://dx.doi.org/10.1007/978-1-61737-957-4_3

[10] Klug, A. (2010) The discovery of zinc fingers and their ap-plications in gene regulation and genome manipulation. Annual Review of Biochemistry, 79, 213-231.
http://dx.doi.org/10.1146/annurev-biochem-010909-095056

[11] Beerli, R.R. and Barbas III., C.F. (2002) Engi-neering polydactyl zinc-finger transcription factors. Nature Biotechnology, 20, 135-141.
http://dx.doi.org/10.1038/nbt0202-135

[12] Dreier, B., Segal, D.J. and Barbas III., C.F. (2000) Insights into the molecular recognition of the 5′2 GNN23′ family of DNA sequence by zinc finger domains. Journal of Molecular Biology, 303, 489-502.
http://dx.doi.org/10.1006/jmbi.2000.4133

[13] Bitinaite, J., Wah, D.A., Aggarwal, A.K. and Schildkraut, I. (2002) FokI dimerization is required for DNA cleavage. Proceedings of the National Academy of Sciences of the United States of America, 95, 10570-10575.
http://dx.doi.org/10.1073/pnas.95.18.10570

[14] Miller, J.C., Holmes, M.C., Wang, J., Guschin, D.Y., Lee, Y.L., Rupniewski, I., Beausejour, C.M., Waite, A.J., Wang, N.S., Kim, K.A., Gregory, P.D., Pabo, C.O. and Rebar, E.J. (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnology, 25, 778-785.
http://dx.doi.org/10.1038/nbt1319

[15] Carroll, D. (2011) Genome engineering with zinc-finger nucleases. Genetics, 188, 773-782.
http://dx.doi.org/10.1534/genetics.111.131433

[16] Isalan, M., Choo, Y. and Klug, A. (1997) Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proceedings of the National Academy of Sciences of the United States of America, 94, 5617-5621.
http://dx.doi.org/10.1073/pnas.94.11.5617

[17] Imanishi, M., Nakamura, A., Morisaki, T. and Futaki, S. (2009) Positive and negative cooperativity of modularly assembled zinc fingers. Biochemical and Biophysical Research Communications, 387, 440-443.
http://dx.doi.org/10.1016/j.bbrc.2009.07.059

[18] Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, J., Xia, D.F., Meng, X., Paschon, D.E., Leung, E., Hinkley, S.J., Dulay, G.P., Hua, K.L., Ankoudinova, I., Cost, G.J., Urnov, F.D., Zhang, H.S., Holmes, M.C., Zhang, L., Gregory, P.D. and Rebar, E.J. (2011) A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29, 143-148.
http://dx.doi.org/10.1038/nbt.1755

[19] Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A. and Bonas, U. (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509-1512.
http://dx.doi.org/10.1126/science.1178811

[20] Moscou, M.J. and Bogdanove, A.J. (2009) A simple cipher go-verns DNA recognition by TAL effectors. Science, 326, 1501.
http://dx.doi.org/10.1126/science.1178817

[21] Streubel, J., Blücher, C., Landgraf, A. and Boch, J. (2012) TAL effector RVD specificities and efficiencies. Nature Biotechnology, 30, 593-595.
http://dx.doi.org/10.1038/nbt.2304

[22] Joung, J.K. and Sander, J.D. (2013) TALENs: A widely applicable tech-nology for targeted genome editing. Nature Reviews Molecular Cell Biology, 14, 49-55.
http://dx.doi.org/10.1038/nrm3486

[23] Chen, S., Oikonomou, G., Chiu, C.N., Niles, B.J., Liu, J., Lee, D.A., An-toshechkin, I. and Prober, D.A. (2013) A large-scale in vivo analysis reveals that TALENs are significantly more mu-tagenic than ZFNs generated using context- dependent assembly. Nucleic Acids Research, 41, 2769-2678.
http://dx.doi.org/10.1093/nar/gks1356

[24] Miller, J.C., Zhang, L., Xia, D.F., Campo, J.J., Ankoudinova, I.V., Guschin, D.Y., Babiarz, J.E., Meng, X., Hinkley, S.J., Lam, S.C., Paschon, D.E., Vincent, A.I., Dulay, G.P., Barlow, K.A., Shivak, D.A., Leung, E., Kim, J.D., Amora, R., Urnov, F.D., Gregory, P.D. and Rebar, E.J. (2015) Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nature Methods, 12, 465-471.
http://dx.doi.org/10.1038/nmeth.3330

[25] Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J. and Voytas, D.F. (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 39, 82.
http://dx.doi.org/10.1093/nar/gkr218

[26] Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. and Nakata, A. (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169, 5429-5433.

[27] Jansen, R., Embden, J.D., Gaastra, W. and Schouls, L.M. (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43, 1565-1575.
http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x

[28] Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A. and Horvath, P. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709-1712.
http://dx.doi.org/10.1126/science.1138140

[29] Jiang, F. and Doudna, J.A. (2015) The structural biology of CRISPR-Cas systems. Current Opinion in Structural Biology, 30, 100-111.
http://dx.doi.org/10.1016/j.sbi.2015.02.002

[30] Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, L. and Church, G.M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology, 31, 833-838.
http://dx.doi.org/10.1038/nbt.2675

[31] Deveau, H., Barrangou, R., Garneau, J.E., Labonte, J., Fremaux, C., Boyaval, P., Romero, D.A., Horvath, P. and Moineau, S. (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of Bacteriology, 190, 1390-1400.
http://dx.doi.org/10.1128/JB.01412-07

[32] Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A. and Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas sys-tems. Science, 339, 819-823.
http://dx.doi.org/10.1126/science.1231143

[33] Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., Cradick, T.J., Marraffini, L.A., Bao, G. and Zhang, F. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31, 827-832.
http://dx.doi.org/10.1038/nbt.2647

[34] Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y. and Zhang, F. (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154, 1380-1389.
http://dx.doi.org/10.1016/j.cell.2013.08.021

[35] Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N. and Zhu, J.K. (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 12, 797-807.
http://dx.doi.org/10.1111/pbi.12200

[36] Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., Kang, Y., Zhao, X., Si, W., Li, W., Xiang, A.P., Zhou, J., Guo, X., Bi, Y., Si, C., Hu, B., Dong, G., Wang, H., Zhou, Z., Li, T., Tan, T., Pu, X., Wang, F., Ji, S., Zhou, Q., Huang, X., Ji, W. and Sha, J. (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 156, 836-843.
http://dx.doi.org/10.1016/j.cell.2014.01.027

[37] Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H. and Qu, L.J. (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 10, 1233-1236.
http://dx.doi.org/10.1038/cr.2013.123

[38] Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., Lin, Y., Xie, Y., Shen, R., Chen, S., Wang, Z., Chen, Y., Guo, J., Chen, L., Zhao, X., Dong, Z. and Liu, Y.G. (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, in Press.
http://dx.doi.org/10.1016/j.molp.2015.04.007

[39] Wiedenheft, B., Sternberg, S.H. and Doudna, J.A. (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature, 482, 331-338.
http://dx.doi.org/10.1038/nature10886

[40] Gaj, T., Gersbach, C.A. and Barbas III., C.F. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31, 397-405.
http://dx.doi.org/10.1016/j.tibtech.2013.04.004

分享
Top