基于视频的雾天驾驶场景及其能见度识别算法研究
Research of Fog Driving Scenarios and Visibility Recognition Algorithm Based on Video

作者: 朱舞雪 , 宋春林 :同济大学电子与信息工程学院,上海;

关键词: 雾检测能见度柯什米德定律区域分割Hough变换Fog Detection Visibility Koschmieder Region Segmentation Hough Transformation

摘要:
获取实时、全面、准确的道路交通场景信息是预防交通事故的重要前提和基本保障,也是实现城市交通智能化的关键。针对雾天驾驶场景及其能见度的识别,传统算法存在复杂度高、鲁棒性差的问题,且多为固定场景下的识别,很难应用于移动的驾驶场景下。本文提出了一种基于单目视觉的雾天识别和能见度估计算法。该算法以柯什米德定律为基础,通过限定Hough变换的极角、半径,压缩投票空间,减少了计算量和复杂度。自定义的区域增长条件,较好的解决了移动场景下的道路分割准确度差的问题。利用加权平均的图像亮度拐点估计方法,能有效地排除干扰,保证拐点估计的准确度。仿真结果表明,算法能实现移动场景下的雾天及能见度识别,精确度、实时性、鲁棒性较好。

Abstract: Obtaining real-time, comprehensive and accurate road traffic information is the important pre-condition and basic guarantee to prevent traffic accidents, and also is the key to realize the urban traffic intelligent. For recognition of fog driving scenarios and visibility, the traditional algorithm has the problems of high complexity, poor robustness, and more using in fixed scene; it is difficult to apply to mobile driving scenarios. This paper proposed a fog and visibility estimation algorithm based on monocular vision. The algorithm, based on the law of Koschmieder, compresses Hough transformation vote space and reduces calculation amount and complexity by limiting polar angle and radius. Custom regional growth solves the problem of poor accuracy in the mobile scenarios’ road segmentation. The weighted average of luminance method which is used in estimation of inflection point can effectively remove interference and ensure accuracy. The simulation results show that the algorithm can realize the recognition of fog and visibility in mobile scenarios with high accuracy, real-time performance and robustness.

文章引用: 朱舞雪 , 宋春林 (2015) 基于视频的雾天驾驶场景及其能见度识别算法研究。 图像与信号处理, 4, 67-77. doi: 10.12677/JISP.2015.43008

参考文献

[1] Bronte, S., Bergasa, L.M. and Alcantarilla, P.F. (2009) Fog detection system based on computer vision techniques. International IEEE Conference on Intelligent Transportation Systems, St. Louis, 4-7 October 2009, 1-6.
http://dx.doi.org/10.1109/itsc.2009.5309842

[2] Hautiere, N., Labayrade, R. and Aubert, D. (2006) Real-time disparity contrast combination for onboard estimation of the visibility distance. IEEE Transactions on Intelligent Transportation Systems, 7, 201-212.
http://dx.doi.org/10.1109/TITS.2006.874682

[3] 宋洪军, 陈阳舟, 郜园园 (2013) 基于交通视频的雾天检测与去雾方法研究. 控制工程, 6, 1156-1160.

[4] 宋晓建, 杨玲(2011) 基于图像退化模型的天气现象识别. 成都信息工程学院学报, 2, 132-136.

[5] 李骞, 范茵, 张璟, 李宝强 (2011) 基于室外图像的天气现象识别方法. 计算机应用, 6, 1624-1627.

[6] Negru, M. and Nedevschi, S. (2013) Image based fog detection and visibility estimation for driving assistance systems. IEEE International Conference on Intelligent Computer Communication & Processing, 5-7 September 2013, 163-168.
http://dx.doi.org/10.1109/iccp.2013.6646102

[7] Hautiére, N., et al. (2006) Automatic fog detection and estimation of visibility distance through use of an onboard camera. Machine Vision & Applications, 17, 8-20.
http://dx.doi.org/10.1007/s00138-005-0011-1

[8] Canny, J. (1986) A computational approach to edge detection. IEEE Transactions on Pattern Analysis & Machine Intelligence, PAMI-8, 184-203.
http://dx.doi.org/10.1109/tpami.1986.4767851

[9] 袁萍 (2014) 高速公路恶劣天气及交通状况智能分析系统研究与实现. 硕士论文, 西南交通大学, 成都.

[10] Salvucci, D.D. (2004) Inferring driver intent: A case study in lane-change detection. Human Factors & Ergonomics Society Annual Meeting Proceedings, 48, 2228-2231.
http://dx.doi.org/10.1177/154193120404801905

分享
Top