DRAGON用于嬗变MA的计算研究
Computational Study of DRAGON for Minor Actinide Transmutation

作者: 李想 * , 刘滨 , 贾仁东 , 蔡进 :华北电力大学,核科学与工程学院,北京;

关键词: 压水堆MA嬗变燃耗燃料周期The PWR Minor Actinide Transmutation Burnup Fuel-Cycle

摘要: 长寿命高放废物MA作为核电站乏燃料中的重要组成部分,由于其特殊的物理化学性质,对生态有很强的危害性,一直是各国研究的重要课题之一。目前处理MA最安全有效的方法,是中子嬗变技术,而压水堆又是我国目前投入商业运行的主要的堆型,因此开展压水堆嬗变MA的研究在我国具有重要的意义。本文利用DRAGON程序建立了简化的AP1000燃料组件模型,模拟计算了在可燃毒物内均匀混合MA、在可燃毒物外镀层引入MA两种方式对燃料组件有效增殖因子(keff)、堆芯燃耗、燃料周期以及堆芯寿期的影响。结果表明:MA以上述两种方式添加到可燃毒物中后,燃料组件的燃耗深度会减少,从而延长了堆芯的燃料周期,同时也会对燃料组件的keff值产生影响,燃料组件维持在临界以上的时间也会延长,在一定程度上也会对整个堆芯的寿期产生有利影响。

Abstract: The Minor Actinides (MA), a sort of long-lived and high-level radioactive nuclides is one of the most important part in the nuclear spent fuel. The MA is harmful to the ecological system because of its peculiar physical and chemical property. How to handle the MA in the spent fuel has always been one of the most important issues in nuclear waste management all over the world. The MA can be transmuted into stable or short-lived nuclides by neutron irradiation, and this is the most effective way to manage those high-level wastes. The PWR is the main reactor type at commercial operation in China, and the MA has a larger capture and fission cross section in the thermal reactor, therefore the study on the transmutation of the MA in the PWR has an important significance in China. This paper has used the DRAGON to build a simplified model of the AP1000 PWR fuel assembly and calculated the impacts on the k-effective of the fuel assembly, the fuel burnup, the fuel cycle and core lifetime when the MA uniformly mixed with the burnable poison or cladded on the burnable poison. The results show that: when the MA is added to the burnable poison in the above two methods, burnup level of the fuel assembly decreases and the fuel cycle of the core lengthens. It also has an impact on the k-effective of the fuel assembly, extending the time of the fuel assembly maintaining above the critical and has a favorable impact on core lifetime.

文章引用: 李想 , 刘滨 , 贾仁东 , 蔡进 (2015) DRAGON用于嬗变MA的计算研究。 核科学与技术, 3, 103-112. doi: 10.12677/NST.2015.33015

参考文献

[1] 刘学刚, 徐景明, 梁俊福, 等 (2006) 乏燃料后处理和高放废液分离一体化流程研究进展. 科技导报, 7, 77-81.

[2] 左国平, 柯国土, 龚学余, 等 (2011) MA嬗变策略研究. 科技导报, 7, 42-45.

[3] Iwasaki, T. (2002) A study of transmutation of minor-actinide in a thermal neutron field of the advanced neutron source. Progress in Nuclear Energy, 40, 481-488.
http://dx.doi.org/10.1016/S0149-1970(02)00041-0

[4] Wakabayashi, T. (2002) Transmutation characteristics of MA and LLFP in a fast reactor. Progress in Nuclear Energy, 40, 457-463.
http://dx.doi.org/10.1016/S0149-1970(02)00038-0

[5] 张玉山 (2001) 从广义自持链式反应观点看加速器驱动系统. 核科学与工程, 4, 375-380.

[6] 西屋电气公司 (2006) 西屋公司的AP1000先进非能动型核电厂. 现代电力, 5, 55-65.

[7] 顾忠茂, 叶国安 (2002) 先进核燃料循环体系研究进展. 原子能科学技术, 2, 160-167.

[8] 袁涛, 王晓宇, 栗再新, 等 (2004) 核废物处理途径的探讨. 科学技术与工程, 10, 861-867.

[9] 林诚格, 郁祖盛 (1995) 非能动安全先进核电厂AP1000. 原子能出版社, 北京.

[10] 毕光文, 司胜义 (2010) DRAGON程序用于压水堆燃料组件计算的有效性验证与分析. 第十三届反应堆数值计算与粒子输运学术会议暨2010年反应堆物理会议论文集, 1-8.

[11] 史永谦 (2007) 核电站乏燃料对生物圈的影响及ADS对策. 原子核物理评论, 2, 151-155.

分享
Top