Ni含量梯度变化的Cu-Ni合金力学性能分子动力学模拟
Molecular Dynamics Simulations on Mechanical Properties of Cu-Ni Alloys with Gradient Distribution of Ni Content
作者: 黄鸿翔 , 陈尚达 , 吴勇芝 :湘潭大学,材料科学与工程学院,湖南 湘潭;
关键词: 分子动力学; Cu-Ni合金; 三叉晶界; 屈服强度; Molecular Dynamics; Cu-Ni Alloys; Triple Junction; Yield Strength
摘要:Abstract: Molecular dynamics (MD) simulations of nanocrystalline Cu-Ni alloys with different gradient dis-tribution of Ni content under uniaxial tensile straining were performed to study their deformation behaviors and mechanical properties. The results indicate that, with the increase of concentration gradient of the Ni, the elasticity young’s modulus of Cu-Ni alloy increases gradually, and the yield strength and ductility of the alloy were impacted by the change of Ni content. When tensile direc-tion perpendicular to the direction of concentration gradient, the cracks appeared in triple junction firstly after yield stage, and then in the area of Ni content close to 50 percent. When concentration gradient of Ni is very high, rich Cu area will crack easily.
文章引用: 黄鸿翔 , 陈尚达 , 吴勇芝 (2015) Ni含量梯度变化的Cu-Ni合金力学性能分子动力学模拟。 材料科学, 5, 151-157. doi: 10.12677/MS.2015.54021
参考文献
[1] Baskaran, I., Narayanan, T.S. and Stephen, A. (2006) Pulsed electrodeposition of nanocrystalline Cu-Ni alloy films and evaluation of their characteristic properties. Materials Letters, 60, 1990-1995. http://dx.doi.org/10.1016/j.matlet.2005.12.065
[2] 熊惟皓, 刘锦文 (1998) 合金化与形变热处理对铜合金弹性模量的影响. 华中理工大学学报, S1, 19-21.
[3] 王俊陞 (1979) 合金化元素对弹性模量的影响. 稀有金属, 04, 1-11.
[4] Arsenault, R.J. (1969) Solid solution strengthening and weakening of b.c.c. solid solutions. Acta Mater, 17, 1291-1297. http://dx.doi.org/10.1016/0001-6160(69)90144-8
[5] Pink, E. and Arsenault R.J. (1972) Solid-solution strengthening and weakening of vanadium-titanium alloys. Metal Science, 6, 1-6. http://dx.doi.org/10.1179/030634572790445777
[6] Peters, B.C. and Hendrickson, A.A. (1970) Solid solution Nb-Mo alloy strengthening in Nb-Ta and single crystals. Metallurgical Transactions, 1, 2271-2280. http://dx.doi.org/10.1007/BF02643445
[7] Medvedeva, N.I., Gornostyrev, Y.N. and Freeman, A.J. (2005) Solid solu-tion softening in bcc Mo alloys: Effect of transition-metal additions on dislocation structure and mobility. Physical Review B, 72, 1-9. http://dx.doi.org/10.1103/physrevb.72.134107
[8] 刘志林, 林成 (2008) 合金电子结构参数统计值及合金力学性能计算. 冶金工业出版社, 北京.
[9] 李飞, 王文静, 王月, 邵善威 (2014) Mg-Al合金固溶强化的电子理论研究. 兵器材料科学与工程, 04, 55-57.
[10] Zhu, X.Y., Liu, X.J., Zong, R.L., et al. (2010) Microstructure and me-chanical properties of nanoscale Cu/Ni multilayers. Materials Science and Engineering: A, 527, 1243-1248. http://dx.doi.org/10.1016/j.msea.2009.09.058