添加P与Cu对FeSiB软磁合金性能的影响
Effects of P and Cu on the Soft Magnetic Properties of FeSiB Alloy

作者: 孔凡利 , 门贺 , 沈宝龙 :;

关键词: 铁基纳米晶合金软磁性能低矫顽力Fe-Based Nanocrystalline Alloys Soft Magnetic Properties Low Coercivity

摘要: 本文在FeSiB合金的基础上,提高了Fe元素的相对含量,添加了P和Cu元素,通过熔体快淬法制备出FeSiBPCu非晶合金,并在不同温度进行热处理制得纳米晶合金。利用DSC,XRD,VSM,直流B-H回线测量仪研究了其结构及性能的变化规律。结果发现,退火后纳米晶合金饱和磁感应强度得到了大幅提高;P和Cu元素的复合添加可以有效的提高FeSiB合金非晶形成能力,使第一与第二晶化峰的温度间隔由102 K增加到137 K。对FeSiBPCu合金在623 K到763 K进行热处理后,呈现出矫顽力先减小后增大,磁导率先增大后减小的趋势,其中在723 K热处理后得到最佳磁性能:饱和磁感应强度达到1.82 T,矫顽力为2.3 A/m,1kHz下有效磁导率超过30000。

Abstract: Nanocrystalline Fe84-xSi4B12-yPyCux(x = 0, 1; y = 0, 4) alloys were prepared by annealing the amorphous precursor at at different temperatures. The microsturcture, thermal and magnetic properties were studied utilizing XRD, DSC, VSM and a DC B-H loop tracer, respectively. It was found that the saturation magnetic flux density of nanocystalline alloys have been greatly improved. The simultaneous addition of P and Cu can improve the glass forming ability of FeSiB alloy effectively, and the temperature interval between Tx1 and Tx2 enlarges gradually from 102 to 137 K. After annealing between 623 K and 763 K, the coercivity decreases and then increase, while the permeability increases and then decreases. The alloy annealed at 723 K shows the best magnetic porperties, for example, high saturation magnetic flux density of 1.82 T, low coer-civity of 2.3 A/m and effective permeability of more than 30000 at 1 kHz.

文章引用: 孔凡利 , 门贺 , 沈宝龙 (2011) 添加P与Cu对FeSiB软磁合金性能的影响。 材料科学, 1, 42-45. doi: 10.12677/ms.2011.12008

参考文献

[1] J. Petzold. Applications of nanocrystalline softmagnetic materials for modern electronic devices. Scripta Materialia, 2003, 48(7): 895-901.

[2] Y. Yoshizawa, S. Oguma, and K. Yamauchi. New Fe-based soft magnetic alloys composed of ultrafine grain structure. Journal of Applied Physics, 1988, 64(10): 6044-6046.

[3] K. Suzuki, M. Kikuchi, A. Makino, et al. Changes in micro-structure and soft magnetic properties of a Fe86Zr7B6Cu1 amorphous alloy upon crystallization. Materials Transactions Jim, 1991, 32(10): 961-968.

[4] M. A. Willard, D. E. Laughlin, M. E. McHenry, et al. Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. Journal of Applied Physics, 1998, 84(12): 6773-6777.

[5] M. Ohta, Y. Yoshizawa. Magnetic properties of nanocrystalline Fe82.65Cu1.35SixB16–x alloys (x = 0 - 7). Applied Physics Letters, 2007, 91(6): Article ID 062517.

[6] M. Ohta, Y. Yoshizawa. Cu addition effect on soft magnetic properties in Fe-Si-B alloy system. Journal of Applied Physics, 2008, 103(7): Article ID 07E72.

[7] M. He, L. Y. Cui, T. Kubota, et al. Fe-rich soft magnetic FeSiBPCu hetero-amorphous alloys with high saturation magnetization. Materials Transactions, 2009, 50(6): 1330-1333.

[8] F. Kong, A. Wang, X. Fan, et al. High BsFe84Si4B8P4Cux(x = 0 - 1.5) nanocrystalline alloys with excellent magnetic softness. Journal of Applied Physics, 2011, 109(7): Article ID 07A303.

[9] B. L. Shen, H. Kimura, and A. Inoue. Structure and magnetic properties of Fe42.5Co42.5Nb7B8 nanocrystalline alloy. Materials Transactions, 2002, 43(3): 589-592.

[10] G. Herzer. Grain size dependence of coercivity and permeability innanocrystalline ferromagnets. IEEE Transactions on Magnetics, 1990, 26(5): 1397-1402.

分享
Top